Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-23T01:08:33.089Z Has data issue: false hasContentIssue false

Plasma channeling by multiple short-pulse lasers

Published online by Cambridge University Press:  23 January 2009

W. Yu
Affiliation:
Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, China Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou, China
L. Cao
Affiliation:
Institute of Applied Physics and Computational Mathematics, Beijing, China
M.Y. Yu
Affiliation:
Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou, China Institute for Theoretical Physics I, Ruhr University, Bochum, Germany
H. Cai
Affiliation:
Institute of Applied Physics and Computational Mathematics, Beijing, China Institute of Laser Engineering and Graduate School of Engineering, Osaka University, Osaka, Japan
H. Xu
Affiliation:
Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, China
X. Yang
Affiliation:
Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, China
A. Lei*
Affiliation:
Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, China
K.A. Tanaka
Affiliation:
Institute of Laser Engineering and Graduate School of Engineering, Osaka University, Osaka, Japan
R. Kodama
Affiliation:
Institute of Laser Engineering and Graduate School of Engineering, Osaka University, Osaka, Japan
*
Address correspondence and reprint request to: Anle Lei, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China. E-mail: [email protected]

Abstract

Channeling by a train of laser pulses into homogeneous and inhomogeneous plasmas is studied using particle-in-cell simulation. When the pulse duration and the interval between the successive pulses are appropriate, the laser pulse train can channel into the plasma deeper than a single long-pulse laser of similar peak intensity and total energy. The increased penetration distance can be attributed to the repeated actions of the ponderomotive force, the continuous between-pulse channel lengthening by the inertially evacuating ions, and the suppression of laser-driven plasma instabilities by the intermittent laser-energy cut-offs.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bogaerts, A., Chen, Z., Gijbels, R. & Vertes, A. (2003). Laser ablation for analytical sampling: what can we learn from modeling? Spectrochim. Acta. B 58, 18671893.CrossRefGoogle Scholar
Borghesi, M., Campbell, D.H., Schiavi, A., Willi, O., Galimberti, M., Gizzi, L.A., Mackinnon, A.J., Snavely, R.D., Patel, P., Hatchett, S., Key, M. & Nazarov, W. (2002). Propagation issues and energetic particle production in laser–plasma interactions at intensities exceeding 1019 W/cm2. Laser Part. Beams 20, 3138.CrossRefGoogle Scholar
Borghesi, M., Kar, S., Romagnani, L., Toncian, T., Antici, P., Audebert, P., Brambrink, E., Ceccherini, F., Cecchetti, C.A., Fuchs, J., Galimberti, M., Gizzi, L.A., Grismayer, T., Lyseikina, T., Jung, R., Macchi, A., Mora, P., Osterholz, J., Schiavi, A. & Willi, O. (2007). Impulsive electric fields driven by high-intensity laser matter interactions. Laser Part. Beams 25, 161167.CrossRefGoogle Scholar
Borghesi, M., MacKinnon, A.J., Barringer, L., Gaillard, R., Gizzi, L.A., Meyer, C., Willi, O., Pukhov, A. & Meyer-ter-Vehn, J. (1997). Relativistic channeling of a picosecond laser pulse in a near-critical preformed plasma. Phys. Rev. Lett. 78, 879882.CrossRefGoogle Scholar
Borisov, B., Borovskiy, A.V., Korobkin, V.V., Prokhorov, A. M., Shiryaev, O.B, Shi, X.M.Luk, T.S., McPherson, A., Solem, J.C, Boyer, K. & Rhodes, C.K. (1992). Observation of relativistic and charge-displacement self-channeling of intense subpicosecond ultraviolet (248 nm) radiation in plasmas. Phys. Rev. Lett. 68, 23092312.CrossRefGoogle ScholarPubMed
Bret, A. & Deutsch, C. (2006). Density gradient effects on beam plasma linear instabilities for fast ignition scenario. Laser Part. Beams 24, 269273.CrossRefGoogle Scholar
Flippo, K., Hegelich, B.M., Albright, B.J., Yin, L., Gautier, D.C., Letzring, S., Schollmeier, M., Schreiber, J., Schulze, R. & Fernández, J.C. (2007). Laser-driven ion accelerators: Spectral control, monoenergetic ions and new acceleration mechanisms. Laser Part. Beams 25, 38.CrossRefGoogle Scholar
Fuchs, J., Adam, J.C., Amiranoff, F., Baton, S.D., Gallant, P., Gremillet, L., Héron, A., Kieffer, J.C., Laval, G., Malka, G., Miquel, J.L., Mora, P., Pépin, H. & Rousseaux, C. (1998). Transmission through highly overdense plasma slabs with a subpicosecond relativistic laser pulse. Phys. Rev. Lett. 80, 23262329.CrossRefGoogle Scholar
Gupta, M.K., Sharma, R.P. & Mahmoud, S.T. (2007). Generation of plasma wave and third harmonic generation at ultra relativistic laser power. Laser Part. Beams 25, 211218.CrossRefGoogle Scholar
Hoffmann, D.H.H., Blazevic, A., Ni, P., Rosmej, O., Roth, M., Tahir, N.A., Tauschwitz, A., Udrea, S., Varentsov, D., Weyrich, K. & Maron, Y. (2005). Present and future perspectives for high energy density physics with intense heavy ion and laser beams. Laser Part. Beams 23, 4753.CrossRefGoogle Scholar
Kodama, R., Mima, K., Tanaka, K.A., Kitagawa, Y., Fujita, H., Takahashi, K., Sunahara, A., Fujita, K., Habara, H., Jitsuno, T., Sentoku, Y., Matsushita, T., Miyakoshi, T., Miyanaga, N., Norimatsu, T, Setoguchi, H., Sonomoto, T., Tanpo, M., Toyama, Y. & Yamanaka, T. (2001). Fast ignitor research at the Institute of Laser Engineering, Osaka University. Phys. Plasmas 8, 22682274.CrossRefGoogle Scholar
Laska, L., Badziak, J., Gammino, S., Jungwirth, K., Kasperczuk, A., Krása, J., Krouský, E., Kubeš, P., Parys, P., Pfeifer, M., Pisarczyk, T., Rohlena, K., Rosinski, M., Ryć, L., Skála, J., Torrisi, L., Ullschmied, J., Velyhan, A. & Wolowski, J. (2007). The influence of an intense laser beam interaction with preformed plasma on the characteristics of emitted ion streams. Laser Part. Beams 25, 549556.CrossRefGoogle Scholar
Lei, A.L., Pukhov, A., Kodama, R., Yabuuchi, T., Adumi, K., Endo, K., Freeman, R.R., Habara, H., Kitagawa, Y., Kondo, K., Kumar, G.R., Matsuoka, T., Mima, K., Nagatomo, H., Norimatsu, T., Shorokhov, O., Snavely, R., Yang, X.Q., Zheng, J. & Tanaka, K.A. (2007). Relativistic laser channeling in plasmas for fast ignition. Phys. Rev. E 76, 066403.CrossRefGoogle ScholarPubMed
Najmudin, Z., Krushelnick, K., Tatarakis, M., Clark, E.L.Danson, C.N., Malka, V., Neely, D., Santala, M.I.K. & Dangor, A.E. (2003). The effect of high intensity laser propagation instabilities on channel formation in underdense plasmas. Phys. Plasmas 10, 438442.CrossRefGoogle Scholar
Osman, F., Yu, Cang, Hora, H., Cao, L-H., Liu, H., He, X., Badziak, J., Parys, A.B., Wolowski, J., Woryna, E., Jungwirth, K., Králikova, B., Krása, J., Láska, L., Pfeifer, M., Rohlena, K., Skála, J. & Ullschmied, J. (2004). Skin depth plasma front interaction mechanism with prepulse suppression to avoid relativistic self-focusing for high-gain laser fusion. Laser Part. Beams 22, 8387.CrossRefGoogle Scholar
Pukhov, A. & Meyer-ter-Vehn, J. (1997). Laser hole boring into overdense plasma and relativistic electron currents for fast ignition of ICF targets. Phys. Rev. Lett. 79, 26862690.CrossRefGoogle Scholar
Schifano, E., Baton, S.D., Biancalana, V., Giulietti, A., Giulietti, D., Labaune, C. & Renard, N. (1994). 2nd-harmonic emission from laser-preformed plasmas as a diagnostic for filamentation in various interaction conditions. Laser Part. Beams 12, 435444.CrossRefGoogle Scholar
Tabak, M., Hammer, J., Glinsky, M.E., Kruer, W.L., Wilks, S.C., Woodworth, J., Campbell, E.M. & Perry, M.D. (1994). Elongation of plasma channel for electron acceleration. Phys. Plasmas 1, 16261634.CrossRefGoogle Scholar
Tanaka, K.A., Allen, M.M., Pukhov, A., Kodama, R., Fujita, H., Kato, Y., Kawasaki, T., Kitagawa, Y., Mima, K., Morio, N., Shiraga, H., Iwata, M., Miyakoshi, T. & Yamanaka, T. (2000). Evidence of relativistic laser beam filamentation in back-reflected images. Phys. Rev. E 62, 26722677.CrossRefGoogle ScholarPubMed
Vshivkov, V.A., Naumova, N.M., Pegoraro, F. & Bulanov, S.V. (1998). Nonlinear electrodynamics of the interaction of ultra-intense laser pulses with a thin foil. Phys. Plasmas 5, 27272741.CrossRefGoogle Scholar
Wilks, S.C., Kruer, W.L., Tabak, M. & Langdon, A.B. (1992). Absorption of ultra-intense laser pulses. Phys. Rev. Lett. 69, 13831387.CrossRefGoogle ScholarPubMed
Willi, O., Campbell, D.H., Schiavi, A., Borghesi, M., Galimberti, M., Gizzi, L.A., Nazarov, W., Mackinnon, A.J., Pukhov, A. & Meyer-ter-vehn, J. (2001). Relativistic laser propagation through underdense and overdense plasmas. Laser Part. Beams 19, 513.CrossRefGoogle Scholar
Wolowski, J., Badziak, J., Czarnecka, A., Parys, P., Pisarek, M., Rosinski, M., Turan, R. & Yerci, S. (2007). Application of pulsed laser deposition and laser-induced ion implantation for formation of semiconductor nano-crystallites. Laser Part. Beams 25, 6569.CrossRefGoogle Scholar
Xu, H., Chang, W.W., Zhuo, H.B., Chang, L.H. & Yue, Z.W. (2002). Parallel programming of 2(1/2)-dimensional pic under distributed-memory parallel environments. Chin. J. Comput. Phys. 19, 305.Google Scholar
Yu, W, Yu, M.Y., Xu, H., Tian, Y.W., Chen, J. & Wong, A.Y. (2007). Intense local plasma heating by stopping of ultrashort ultraintense laser pulse in dense plasma. Laser Part. Beams 25, 631638.CrossRefGoogle Scholar
Zeng, X., Mao, X., Mao, S.S., Wen, S.-B., Greif, R. & Russo, R.E. (2006). Laser-induced shockwave propagation from ablation in a cavity. Appl. Phys. Lett. 88, 061502.CrossRefGoogle Scholar
Zepf, M., Castro-Colin, M, Chambers, D., Preston, S.G., Wark, J.S., Zhang, J., Danson, C.N., Neely, D., Norreys, P.A., Dangor, A.E., Dyson, A., Lee, P., Fews, A.P., Gibbon, P., Moustaizis, S. & Key, M.H. (1996). Measurements of the hole boring velocity from Doppler shifted harmonic emission from solid targets. Phys. Plasmas 3, 32423244.CrossRefGoogle Scholar