Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-26T21:20:50.819Z Has data issue: false hasContentIssue false

Picosecond time-resolved X-ray diffraction from laser-shocked semiconductors

Published online by Cambridge University Press:  01 July 2004

KAZUTAKA G. NAKAMURA
Affiliation:
Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Yokohama 226-8503, Japan
YOICHIRO HIRONAKA
Affiliation:
Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Yokohama 226-8503, Japan
HIDETAKA KAWANO
Affiliation:
Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Yokohama 226-8503, Japan
HIROAKI KISHIMURA
Affiliation:
Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Yokohama 226-8503, Japan
KEN-ICHI KONDO
Affiliation:
Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Yokohama 226-8503, Japan

Abstract

Ultrashort pulsed hard X rays are generated by focusing an intense femtosecond laser beam onto metal targets. Kα emissions are obtained from a Cu target. Picosecond time-resolved X-ray diffraction is performed to investigate structural dynamics of laser-shocked semiconductors using the laser plasma X-ray pulses. Lattice deformation associated with shock-wave propagation is directly observed. Evolution of strain profiles inside the crystal is determined without disturbance from the time-resolved X-ray diffraction patterns.

Type
Research Article
Copyright
© 2004 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Gust, W.H. & Royce, E.B. (1972). Xial yield strengths and phase-transition stresses for 〈100〉, 〈110〉, and 〈111〉 germanium. J. Appl. Phys. 43, 44374442.Google Scholar
Gust, W.H. & Royce, E.B. (1971). Xial yield strengths and two successive phase transition stresses for crystalline silicon. J. Appl. Phys. 42, 18971905.Google Scholar
Hironaka, Y., Yazaki, A., Saito, F., Nakamura, K.G., Kondo, K., Takenaka, H. & Yoshida, M. (2000). Volving shock-wave profiles measured in a silicon crystal by picosecond time-resolved X-ray diffraction. Appl. Phys. Lett. 77, 19671969.Google Scholar
Kishimura, H., Yazaki, A., Kawano, H., Hironaka, Y., Nakamura, K.G. & Kondo, K. (2003). Picosecond structural dynamics in photoexcited Si probed by time-resolved X-ray diffraction. J. Chem. Phys. 117, 1023910244.Google Scholar
Kmetec, J.D., Gordon_III, C.L., Maclin., J.J., Lemoff, B.E., Brown, G.S. & Harris, S.E. (1992). eV X-ray generation with a femtosecond laser. Phys. Rev. Lett. 68, 15271530.Google Scholar
Nemoto, K., Masmchuk, A., Banerjee, S., Flippo, K., Mourou, G., Umstadter, D. & Bychenkov, V. Yu. (2001). Laser-triggered ion acceleration and table top isotope production. Appl. Phys. Lett. 78, 595597.Google Scholar
Rischel, C., Rousse, A., Uschmann, I., Albouy, P., Geindre, J., Audebert, P., Gauthier, J., Fter, F., Martin, J. & Antonetti, A. (1997). Femtosecond time-resolved X-ray diffraction from laser-heated organic films. Nature 390, 490493.Google Scholar
Rose-Petruck, C., Jimenez, R., Guo, T., Cavalleri, A., Siders, C.W., Ráksi, F., Squier, J.A., Walker, B.C., Wilson, K.R. & Barty, C.P.J. (1999). Picosecond-milliangstrom lattice dynamics measured by ultrafast X-ray diffraction. Nature 398, 310312.Google Scholar
Wark, J.S., Whitlock, R.R., Hauer, A., Swain, J.E. & Solone, P.J. (1987). Shock launching in silicon studied with use of pulsed X-ray diffraction. Phys. Rev. B 35, 93919394.Google Scholar
Wie, C.R., Tombrello, T.A. & Vreeland_Jr., T. (1986). Dynamical X-ray diffraction from nonuniform crystalline films: Application to X-ray rocking curve analysis. J. Appl. Phys. 59, 37433746.Google Scholar
Yoshida, M., Hironaka, Y., Fujimoto, Y., Nakamura, K.G., Kondo, K., Ohtani, M. & Tsunemi, H. (1998). Generation of picosecond hard X rays by tera watt laser focusing on a copper target. Appl. Phys. Lett. 73, 23932395.Google Scholar