Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-24T17:08:15.093Z Has data issue: false hasContentIssue false

Photon wave mechanics in the eikonal limit: Diamagnetic field-plasma interaction

Published online by Cambridge University Press:  16 June 2008

O. Keller*
Affiliation:
Institute of Physics and Nanotechnology, Aalborg University Aalborg, Denmark
*
Address correspondence and reprint requests to: O. Keller, Institute of Physics and Nanotechnology, Aalborg University, Skjernvej 4A, Aalborg DK-9220, Denmark. E-mail: [email protected]

Abstract

A microscopic eikonal theory based on photon wave mechanics is established. The diamagnetic (solid state) field-plasma interaction is shown to play a central role in the theory, and this interaction enables one to introduce a massive transverse photon concept. This quasi-particle enters the eikonal theory in manner similar to the one in which the classical point particle enters Newtonian Mechanics in the Hamilton-Jacobi formulation. When the spatial fluctuations in the stationary-state plasma density are of importance the microscopic eikonal theory becomes a spatially nonlocal theory, and the nonlocality, originating in the coupling of longitudinal and scalar photons to the massive transverse photon, extends over near-field distances.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baeva, T., Gordienko, S. & Pukhow, A. (2007). Relativistic plasma control for single attosecond pulse generation: Theory, simulations, and structure of the pulse. Laser Part. Beams, 25, 339346.CrossRefGoogle Scholar
Bialynicki-Birula, I. (1996). Photon wave function. In Progress in Optics (Wolf, E., ed.), Vol. XXXVI, pp. 245294. Amsterdam: Elsevier.Google Scholar
Born, M. & Wolf, E. (1999). Principles of Optics. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
de Broglie, L. (1923 a). Ondes et quanta. Compt. Rend. 177, 507510.Google Scholar
de Broglie, L. (1923 b). Quanta de Lumière, diffraction et interferences. Compt. Rend. 177, 548550.Google Scholar
de Broglie, L. (1923 c). Les quanta, la théorie cinétique des gaz et le principe de Fermat. Compt. Rend. 177, 630632.Google Scholar
de Broglie, L. (1924). A tentative theory of light quanta. Phil. Mag. 47, 446458.CrossRefGoogle Scholar
Einstein, A. (1905). Über einen die Erzeugung und Verwandling des Lichtes betreffenden heuristischen Gesichtspunkt. Ann. Phys. 17, 132148.CrossRefGoogle Scholar
Goldstein, H. (1980). Classical Mechanics London, UK: Addison-Wesley.Google Scholar
Gupta, M.K., Sharma, R.P. & Mahmoud, S.T. (2007). Generation of plasma wave and third harmonic generation at ultra relativistic laser power. Laser Part. Beams 25, 211218.CrossRefGoogle Scholar
Hamilton, R.W. (1828). Theory of systems of rays. Trans. Roy. Irish. Acad. 15, 69174.Google Scholar
Kanapathipillai, M. (2006). Nonlinear absorption of ultra short laser pulses by clusters. Laser Part. Beams, 24, 914.CrossRefGoogle Scholar
Kasperczuk, A., Pisarczuk, T. & Zakharow, Y.P. (1999). Investigation of dynamic and stability of laser-produced plasma in strong transverse magnetic field. Laser Part. Beams, 17, 537545.CrossRefGoogle Scholar
Keller, O. (1997). Local fields in linear and nonlinear optics of mesoscopic systems. In Progress in Optics (Wolf, E., ed.), Vol. XXXVII, pp. 257343. Amsterdam: Elsevier.Google Scholar
Keller, O. (2005). On the theory of spatial photon localization. Phys. Rep. 411, 1232.CrossRefGoogle Scholar
Keller, O. (2006). On the theory of spatial photon localization: Fundamentals and the role of near-field plasma screening. Laser Part. Beams 24, 6170.CrossRefGoogle Scholar
Keller, O. (2007 a). Historical papers on the particle concept of light. In Progress in Optics (Wolf, E., ed.), Vol. 50, 5196, Amsterdam: Elsevier.Google Scholar
Keller, O. (2007 b). Hamilton-Jacobi approach to photon wave mechanics: near-field aspects. J. Microsc. 229, 331336.CrossRefGoogle Scholar
Keskinen, M.J. & Schmitt, A. (2007). Nonlocal electron heat flow in high-Z laser-plasmas with radiation transport. Laser Part. Beams, 25, 333337.CrossRefGoogle Scholar
Landau, L. & Peierls, R. (1930). Quantumelektrodynamik im Konfigurationsraum. Z. Phys. 62, 188200.CrossRefGoogle Scholar
Lifschitz, A.F., Faura, J., Glinic, Y., Malka, V. & Mora, P. (2006). Proposed scheme for compact GeV laser plasma accelerator. Laser Part. Beams, 24, 255259.CrossRefGoogle Scholar
Mendonca, J.T. (2004). Photon kinetic theory in plasmas and in optics. Laser Part. Beams, 22, 13.CrossRefGoogle Scholar
Mendonca, J.T., Martins, A.M. & Guerreiro, A. (2000). Field quantisation in a plasma: Photon mass and charge. Phys. Rev. 62, 29892991.Google Scholar
Oppenheimer, J.R. (1931). Note on light quanta and the electromagnetic field. Phys. Rev. 38, 725746.CrossRefGoogle Scholar
Poletto, L. & Villoresi, P. (2007). Realization of a time-compensate monochromator exploiting conical diffraction for few-femtosecond XUV pulses. Laser Part. Beams 25, 391396.CrossRefGoogle Scholar
Schrödinger, E. (1926). Quantization as an eigenvalue problem. In Wave Mechanics, pp. 106126. Oxford: Pergamon.Google Scholar
Sherlock, M., Bell, A.R. & Rozmus, W. (2006). Absorption of ultra-short laser pulses and particle transport in dense targets. Laser Part. Beams, 24, 231234.CrossRefGoogle Scholar
Varro, S. (2007). Linear and nonlinear absolute phase effects in interactions of ultrashort laser pulses with a metal nano-layer or with a thin plasma layer. Laser Part. Beams 25, 379390.CrossRefGoogle Scholar