Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-12T20:39:36.983Z Has data issue: false hasContentIssue false

Optimized laser vacuum acceleration by static magnetic field

Published online by Cambridge University Press:  19 May 2015

H. Lin*
Affiliation:
State Key Laboratory of High Field Laser Physics, Information Technology Research Center of Space Laser, Shanghai Institute of Optics and Fine Mechanics, Shanghai, China
C. P. Liu
Affiliation:
State Key Laboratory of High Field Laser Physics, Information Technology Research Center of Space Laser, Shanghai Institute of Optics and Fine Mechanics, Shanghai, China
C. Wang
Affiliation:
State Key Laboratory of High Field Laser Physics, Information Technology Research Center of Space Laser, Shanghai Institute of Optics and Fine Mechanics, Shanghai, China
B. F. Shen
Affiliation:
State Key Laboratory of High Field Laser Physics, Information Technology Research Center of Space Laser, Shanghai Institute of Optics and Fine Mechanics, Shanghai, China
*
Address correspondence and reprint requests to: H. Lin, State Key Laboratory of High Field Laser Physics, Information Technology Research Center of Space Laser, Shanghai Institute of Optics and Fine Mechanics, P. O. Box 800-211, Shanghai 201800, China. E-mail: [email protected]

Abstract

Laser vacuum acceleration can be optimized significantly by applying a static magnetic field which is along the direction of laser magnetic field. This setup can cause a charged particle to be of a periodic, oscillatory-rising velocity, and significantly high kinetic energy. Moreover, the contribution from the motion vertical to accelerating electric field is fully taken into account and is found to be essential to efficient acceleration.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Apollonov, V.V., Artem'ev, A.I., Kalachev, Yu.L., Suzdaltsev, A.G., Prokhorov, A.M., Fedorov, M.V. (1990). Electron acceleration by intense laser beam in a static magnetic field. J. Exp. Theor. Phys. 70, 846852.Google Scholar
Bochove, E.J., Moore, G.T. & Scully, M.O. (1992). Acceleration of particles by an asymmetric Hermite–Gaussian laser beam, Phys. Rev. A 46, 66406653.CrossRefGoogle ScholarPubMed
Brown, L.S. & Kibble, T.W.B. (1964). Interaction of intense laser beams with electrons. Phys. Rev. 133, A705718.CrossRefGoogle Scholar
Esarey, E., Sprangle, P. & Krall, J. (1995 a). Laser acceleration of electrons in vacuum. Phys. Rev. E 52, 54435453.CrossRefGoogle ScholarPubMed
Esarey, E., Sprangle, P., Pillot, M. & Krall, J. (1995 b). Theory and group velocity of ultrashort, tightly focused laser pulses. J. Opt. Soc. Am. B 12, 16951703.CrossRefGoogle Scholar
Esarey, E., Sprangle, P., Krall, J. & Ting, A. (1996). Overview of plasma-based accelerator concepts. IEEE Trans. Plasma Sci. 24, 252 and references therein.CrossRefGoogle Scholar
Esarey, E., Schroeder, C.B. & Leemans, W.P. (2009). Physics of laser-driven plasma-based electron accelerators. Rev. Mod. Phys. 81, 1229 and reference therein.CrossRefGoogle Scholar
Flippo, K., Hegelich, B.M., Albright, B.J., Yin, L., Gautier, D. C., Letzring, S., Schollmeier, M., Schreiber, J., Schulze, R., Fernandez, J. C. (2007). Laser-driven ion accelerators: spectral control, monoenergetic ions and new acceleration mechanisms. Laser Part. Beams 25, 38.CrossRefGoogle Scholar
Goreslavsky, S.P., Fedorov, M.V. & Kilpio, A.A. (1995). Relativistic drift of an electron under the influence of a short intense laser pulse. Laser Phys. 5, 10201028.Google Scholar
Haaland, C.M. (1995). Laser electron acceleration in vacuum. Opt. Commun. 114, 280284.CrossRefGoogle Scholar
Hartemann, F.V., Fochs, S.N., Le Sage, G.P., Luhmann, N.C., Woodworth, J.G. Jr., Perry, M.D., Chen, Y.J. & Kerman, A.K. (1995). Nonlinear ponderomotive scattering of relativistic electrons by an intense laser field at focus. Phys. Rev. E 51, 48334843.CrossRefGoogle ScholarPubMed
Hartemann, F.V., Van Meter, J.R., Troha, A.L., Landahl, E.C., Luhmann, N.C., Baldis, H.A., Gupta, A. & Kerman, A.K. (1998). Three-dimensional relativistic electron scattering in an ultrahigh-intensity laser focus. Phys. Rev. E 58, 50015012.CrossRefGoogle Scholar
Hauser, T., Scheid, W., & Hora, H. (1994). Conceptual evaluation of a Tev electron acceleration for high luminosity using laser interaction in vacuum. In Laser Interaction and Related Plasma Phenomena, (Miley, G.H., Ed.), p. 20, AIP Conf. Proc. No. 318, New York: AIP.Google Scholar
Ho, Y.K. & Feng, L. (1994). Absence of net acceleration of charged particles by a focused laser beam in free space. Phys. Lett. A 184, 440444.CrossRefGoogle Scholar
Ho, Y.K., Wang, J.X., Feng, L., Scheid, W. & Hora, H. (1996). Electron scattering by an intense continuous laser beam. Phys. Lett. A 220, 189193.CrossRefGoogle Scholar
Huang, S.H., Wu, F.M. & Zhao, X.H. (2007). Electron acceleration by a focused laser pulse in a static magnetic field. Phys. Plasmas 14, 123107.CrossRefGoogle Scholar
Hur, M.S., Gupta, D.N. & Suk, H.Y. (2008). Enhanced electron trapping by a static longitudinal magnetic field in laser wakefield acceleration. Phys. Lett. A 372, 26842687.CrossRefGoogle Scholar
Hussein, M.S., & Pato, M.P. (1992). Nonlinear amplification of inverse-bremsstrahlung electron acceleration. Phys. Rev. Lett. 68, 11361139.CrossRefGoogle ScholarPubMed
Hussein, M.S., Pato, M.P. & Kerman, A.K. (1992). Theory of free-wave acceleration. Phys. Rev. A 46, 35623565.CrossRefGoogle ScholarPubMed
Kawata, S., Maruyama, T., Watanabe, H. & Takahashi, I. (1991). Inverse-bremsstrahlung electron acceleration. Phys. Rev. Lett. 66, 20722075.CrossRefGoogle ScholarPubMed
Korobkin, V.V., Romanovskiy, M.Yu., Trofimov, V.A., Shiryaev, O.B. (2013). Compression and acceleration of electron bunches to high energies in the interference field of intense laser pulses with tilted amplitude fronts: Concept and modelling. Quantum Electron. 43, 232236.CrossRefGoogle Scholar
Lin, H., Liu, C.P., Du, S.T. & Wang, C. (2013). Transportation and acceleration of free electron by laser and economic monocolor high-frequency light source. Appl. Phys. Res. 5, 123131.CrossRefGoogle Scholar
Lin, H., Liu, C.P., Wang, C. & Shen, B.F. (2014). High-efficiency acceleration by the combination of laser and electrostatic field. Laser Part. Beams 32, 577581.CrossRefGoogle Scholar
Malka, G., Lefebvre, E., & Miquel, J.L. (1997). Experimental observation of electrons acceleration in vacuum to relativistic energies by a high-intensity laser. Phys. Rev. Lett. 78, 33143317.CrossRefGoogle Scholar
McDonald, K.T. (1998). Comment on “Experimental observation of electrons acceleration in vacuum to relativistic energies by a high-intensity laser”. Phys. Rev. Lett. 80, 1350.CrossRefGoogle Scholar
Moore, C.I., Knauer, J.P., & Meyerhofer, D.D. (1995). Observation of the transition from Thomson to Compton scattering in multiphoton interaction with low-energy electrons. Phys. Rev. Lett. 74, 24392442.CrossRefGoogle ScholarPubMed
Mora, P. & Quesnel, B. (1998). Comment on “Experimental observation of electrons acceleration in vacuum to relativistic energies by a high-intensity laser”. Phys. Rev. Lett. 80, 1351.CrossRefGoogle Scholar
Mori, W.B. & Katsouleas, T. (1992). Ponderomotive force of a uniform electromagnetic wave in a time varying dielectric medium. Phys. Rev. Lett. 69, 34953498.CrossRefGoogle Scholar
Rau, B., Tajima, T., & Hojo, H. (1997). Coherent electron acceleration by subcycle laser pulses. Phys. Rev. Lett. 78, 33103313.CrossRefGoogle Scholar
Salamin, Y.I. & Keitel, C.H. (2000). Subcycle high electron acceleration by crossed laser beams. Appl. Phys. Lett. 77, 1082.CrossRefGoogle Scholar
Salamin, Y.I., Mocken, G.R., & Keitel, C.H. (2003). Relativistic electron dynamics in intense crossed laser beams: Acceleration and Compton harmonics. Phys. Rev. E 67, 016501.CrossRefGoogle ScholarPubMed
Sarachik, E.S. & Schappert, G.T. (1970). Classical theory of the scattering of intense laser radiation by free electrons. Phys. Rev. D 1, 27382752.CrossRefGoogle Scholar
Scheid, W. & Hora, H. (1989). On electron acceleration by plane transverse electromagnetic pulses in vacuum. Laser Part. Beams 7, 315332.CrossRefGoogle Scholar
Scully, M.O. and Zubairy, M.S. (1991). Simple laser accelerator: Optics and Particle dynamics. Phys. Rev. A 44, 26562663.CrossRefGoogle ScholarPubMed
Sessler, A.M. (1988). New particle acceleration techniques. Phys. Today 41, 26.CrossRefGoogle Scholar
Singh, K.P. (2004). Electron acceleration by an intense short pulse laser in a static magnetic field in vacuum. Phys. Rev. E 69, 056410.CrossRefGoogle Scholar
Sprangle, P., Esarey, E., Krall, J. & Ting, A. (1996). Vacuum laser acceleration. Opt. Commun. 124, 6973.CrossRefGoogle Scholar
Steinhauer, L.C. & Kimura, W.D. (1992). A new approach of laser particle acceleration in vacuum. J. Appl. Phys. 72, 32373245.CrossRefGoogle Scholar
Troha, A.L., Van Meter, J.R., Landahl, E.C., Alvis, R.M., Unterberg, Z.A., Li, K., Luhmann, N.C., Kerman, A.K. & Hartemann, F.V. (1999). Vacuum electron acceleration by coherent dipole radiation. Phys. Rev. E 60, 926934.CrossRefGoogle ScholarPubMed
Tsakiris, G.D., Gahn, C. & Tripathi, V.K. (2000). Laser induced electron acceleration in the presence of static electric and magnetic fields in a plasma. Phys. Plasmas 7, 3017.CrossRefGoogle Scholar
Vieira, J., Martins, J.L., Pathak, V.B., Fonseca, R.A., Mori, W.B. & Silva, L.O. (2012). Magnetically assisted self-injection and radiation generation for plasma-based acceleration. Plasma Phys. Control. Fusion 54, 124044.CrossRefGoogle Scholar
Wang, J.X., Scheid, W., Hoelss, M. & Ho, Y.K. (2002). Comment on “Vacuum electron acceleration by coherent dipole radiation”. Phys. Rev. E 65, 028501.CrossRefGoogle Scholar
Yin, L., Albright, B.J., Heglich, B.M. & Fernandez, J.C. (2006). Gev laser ion acceleration from ultrathin targets: The laser break-out afterburner. Laser Part. Beams 24, 291298.CrossRefGoogle Scholar