Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-23T04:05:13.183Z Has data issue: false hasContentIssue false

Optimization of parameters of a copper plasma jet produced at the plasma focus device

Published online by Cambridge University Press:  24 August 2017

A. Kasperczuk
Affiliation:
Institute of Plasma Physics and Laser Microfusion, Warsaw, Poland
M. Paduch
Affiliation:
Institute of Plasma Physics and Laser Microfusion, Warsaw, Poland
K. Tomaszewski
Affiliation:
ACS Laboratory, ACS Ltd., Warsaw, Poland
R. Miklaszewski
Affiliation:
Institute of Plasma Physics and Laser Microfusion, Warsaw, Poland
K. Jach
Affiliation:
Institute of Optoelectronics, Military University of Technology, Warsaw, Poland
R. Swierczynski
Affiliation:
Institute of Optoelectronics, Military University of Technology, Warsaw, Poland
W. Stepniewski
Affiliation:
Institute of Plasma Physics and Laser Microfusion, Warsaw, Poland
E. Zielinska*
Affiliation:
Institute of Plasma Physics and Laser Microfusion, Warsaw, Poland
A. Szymaszek
Affiliation:
Institute of Plasma Physics and Laser Microfusion, Warsaw, Poland
*
Address correspondence and reprint requests to: E. Zielinska, Institute of Plasma Physics and Laser Microfusion, Warsaw, Poland. E-mail: [email protected]

Abstract

The paper is aimed at optimization of parameters of a copper plasma jet produced at the DPF-1000U device, in which the inner electrode face was conically shaped. Preliminary information was obtained by numerical simulations of the plasma jet creation for different copper cones with the use of the two-dimensional magneto-hydrodynamic code KAROL. The simulations suggested that the cone height in the range of 4–7 cm should ensure a good plasma jet quality. The experimental data delivered by means of a 16-frame laser interferometer and a four-frame X-ray pinhole camera fully confirmed this conclusion. In the paper, we demonstrate the results for a 5 cm height cone. The eroded Cu plasma, swept up by the deuterium plasma sheath, was accelerated axially and compressed to very small diameter (3 mm) with an electron density of 7 × 1018 cm−3. The Cu plasma jet achieved a velocity of 5 × 107 cm/s and reached in the period of about 230 ns a distance (length) of 7 cm. The above results prove a successful adaptation of the plasma focus device to the metallic plasma jet generator.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Coker, R.F., Wilde, B.H., Foster, J.M., Blue, B.E., Rosen, P.A., Williams, R.J.R., Hartigan, P., Frank, A. & Back, C.A. (2007). Numerical simulations and astrophysical applications of laboratory jets at Omega. Astrophys. Space Sci. 307, 5762.Google Scholar
Farley, D.R., Estabrook, K.G., Glendinning, S.G., Glenzer, S.H., Remington, B.A., Shigemori, K., Stone, J.M., Wallance, R.J., Zimmerman, G.B. & Harte, J.A. (1999). Stable dense plasma jets produced at laser power densities around 1014 W/cm2 . Phys. Rev. Lett. 83, 19821985.Google Scholar
Hartigan, P., Foster, J.M., Wilde, B.H., Coker, R.F., Rosen, P.A., Hansen, J.F., Blue, B.E., Williams, R.J.R., Carver, R. & Frank, A. (2009). Laboratory experiments, numerical simulations, and astronomical observations of deflected supersonic jets: application to HH110. Astrophys. J. 705, 10731094.Google Scholar
Jach, K., Morka, A., Mroczkowski, M., Panowicz, R., Sarzyński, A., Stępniewski, W., Świerczyński, R. & Tyl, J. (2001) Computer Modelling of Dynamic Interaction of Bodies by Free Particle Method. Warsaw: PWN (in Polish).Google Scholar
Kasperczuk, A., Kumar, R., Miklaszewski, R., Paduch, M., Pisarczyk, T., Scholz, M. & Tomaszewski, K. (2002). Study of the plasma evolution in the PF-1000 device by means of optical diagnostics. Phys. Scr. 65, 96102.CrossRefGoogle Scholar
Kasperczuk, A., Paduch, M., Tomaszewski, K., Miklaszewski, R., Szymaszek, A. & Zielinska, E. (2016). A plasma focus device as a metallic plasma jet generator. Laser Part. Beams 34, 356362.Google Scholar
Kasperczuk, A., Pisarczyk, T., Borodziuk, S., Ullschmied, J., Krousky, E., Masek, K., Rohlena, K., Skala, J. & Hora, H. (2006). Stable dense plasma jets produced at laser power densities around 1014 W/cm2 . Phys. Plasmas 13, 062704-1/062704-8.CrossRefGoogle Scholar
Kasperczuk, A., Pisarczyk, T., Chodukowski, T., Kalinowska, Z., Stepniewski, W., Jach, K., Swierczynski, R., Renner, O., Smid, M., Ullschmied, J., Cighardt, J., Klir, D., Kubes, P., Rezac, K., Krousky, E., Pfeifer, M. & Skala, J. (2015). Efficiency of ablative plasma energy transfer into a massive aluminum target using different atomic number ablators. Laser Part. Beams 33, 379386.Google Scholar
Kasperczuk, A., Pisarczyk, T., Demchenko, N.N., Gus'kov, S.Y., Kalal, M., Ullschmied, J., Krousky, E., Masek, K., Pfeifer, M., Rohlena, K., Skala, J. & Pisarczyk, P. (2009). Experimental and theoretical investigations of mechanisms responsible for plasma jet formation at PALS. Laser Part. Beams 27, 415427.CrossRefGoogle Scholar
Lebedev, S.V., Chittenden, J.P., Beg, F.N., Bland, S.N., Ciardi, A., Ampleford, D., Hughes, S., Haines, M.G., Frank, A., Blackman, E.G. & Gardiner, T. (2002). Laboratory astrophysics and collimated stellar outflows: the production of radiatively cooled hypersonic plasma jets. Astrophys. J. 564, 113119.Google Scholar
Marczak, J., Jach, K., Świerczyński, S. & Strzelec, M. (2010). Numerical modelling of laser matter interaction in the region of “low” laser parameters. Appl. Phys. A 100, 725.Google Scholar
Nicolai, P., Stenz, C., Ribeyre, X., Tikhonchuk, V.T., Kasperczuk, A., Pisarczyk, T., Juha, L., Krousky, E., Masek, K., Pfeifer, M., Rohlena, K., Skala, J., Ullschmied, J., Kalal, M., Klir, D., Kravarik, J., Kubes, P. & Pisarczyk, P. (2009). Supersonic plasma jet interaction with gases and plasmas. Astrophys. Space Sci. 322, 1117.Google Scholar
Ryutov, D.D., Drake, R.P. & Remington, B.A. (2000). Criteria for scaled laboratory simulations of astrophysical MHD phenomena. Astrophys. J. Suppl. Ser. 127, 465468.Google Scholar
Scholz, M., Miklaszewski, R., Gribkov, V.A. & Mazzetti, F. (2000). PF-1000 device. Nukleonika 45, 155158.Google Scholar
Shigemori, K., Kodama, R., Farley, D.R., Koase, T., Estabrook, K.G., Remington, B.A., Ryutov, D.D., Ochi, Y., Azechi, H., Stone, J. & Turner, N. (2000). Experiments on radiative collapse in laser-produced plasmas relevant to astrophysical jets. Phys. Rev. E 62, 88388841.Google Scholar