Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-17T15:17:29.347Z Has data issue: false hasContentIssue false

Onset of coherent electromagnetic structures in the relativistic electron beam deuterium-tritium fuel interaction of fast ignition concern

Published online by Cambridge University Press:  16 June 2008

C. Deutsch*
Affiliation:
LPGP, Université Paris-Sud, Orsay, France
A. Bret
Affiliation:
ETSIL, Universitad Castilla-la-Mancha, Ciudad-Real, Spain
M.-C. Firpo
Affiliation:
LPTP, Ecole Polytechnique, Palaiseau, France
L. Gremillet
Affiliation:
CEN, Bruyères-le-Châtel, France
E. Lefebvre
Affiliation:
LPGP, Université Paris-Sud, Orsay, France
A. Lifschitz
Affiliation:
LPGP, Université Paris-Sud, Orsay, France
*
Address correspondence and reprint requests to: C. Deutsch, Labortoire de Physique des Gaz et Plasma, University of Paris XI, Orsay 91405, France. E-mail: [email protected]

Abstract

We focus attention on the combinations of swiftly growing electromagnetic instabilities (EMI) arising in the interaction of relativistic electron beams (REB) with precompressed deuterium-tritium (DT) fuels of fast ignition interest for inertial confinement fusion (ICF). REB-target system is taken neutral in charge and current with distribution functions including target and beam temperatures. We stress also the significant impact on modes growth rates (GR) of mode-mode coupling and intrabeam scattering. Collisional damping is documented at large wave numbers in terms of inverse skin depth. A quasi-linear approach yields lower GR than linear ones. One of the most conspicuous output of the linear analysis are three-dimensional (3D) broken ridges featuring the largest GR above k-space for an oblique propagation w.r.t initial particle beam direction. The given modes are seen immune to any temperature induced damping. Those novel patterns are easily produced by considering simultaneously Weibel, filamentation and two-stream instabilities. The behaviors persist in the presence of smooth density gradients or strong applied magnetic fields. Moreover, in the very early propagation stage with no current neutralization in the presence of large edge density gradients, REB demonstrate a characteristics ringlike and regularly spiked pattern in agreement with recent experimental results and previous simulations.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bret, A. & Deutsch, C. (2005). Hierarchy of beam plasma instabilities up to high beam densities for fast ignition scenario. Phys. Plasmas 12, 082704-1-6.Google Scholar
Bret, A. & Deutsch, C. (2006). Density gradient effects on beam plasma linear instabilities for fast ignition scenario. Laser Part. Beams 24, 269273.CrossRefGoogle Scholar
Bret, A., Firpo, M.C. & Deutsch, C. (2007). About the most unstable modes encountered in beam plasma interaction physics. Laser Part. Beams 25, 117119.CrossRefGoogle Scholar
Bret, A., Firpo, M.C. & Deutsch, C. (2004). Oblique instabilities in electron-beam plasma interactions. Phys. Rev. E 70, 046401-1-15.CrossRefGoogle Scholar
Bret, A., Firpo, M.C. & Deutsch, C. (2005a). Bridging a gap between two-stream and filamentation instabilities. Laser & Part. Beams 23, 375383.CrossRefGoogle Scholar
Bret, A., Firpo, M.C. & Deutsch, C. (2005b). Characterization of the initial filamentation of a relativistic electron beam passing through a plasma. Phys. Rev. Lett. 94, 115002.CrossRefGoogle ScholarPubMed
Bret, A., Firpo, M.C. & Deutsch, C. (2005c). Collective electromagneric instabilities for relativistic beam-plasma interaction in whole k-space: Nonrelativistic beam and plasma temperature effects. Phys. Rev. E 72, 016403-1-14.CrossRefGoogle Scholar
Bret, A., Firpo, M.C. & Deutsch, C. (2006). Between two-stream and filamentation Instabilities: Temperature and collision effects. Laser Part. Beams 24, 2733.CrossRefGoogle Scholar
Deutsch, C. (2004). Penetration of intense particle beams in the outer layers of precompressed thermonuclear fuels. Laser Part. Beams 22, 115120.CrossRefGoogle Scholar
Deutsch, C., Bret, A., Firpo, M.C. & Fromy, P. (2005). Interplay of collisions with quasilinear growth rates of relativistic electron beam driven instabilities in a superdense plasma. Phys. Rev. 72, 026402-1-12.Google Scholar
Deutsch, C., Furukawa, H., Mima, K. & Nishihara, K. (1996). Interaction physics of the fast ignitor concept. Phys. Rev. Lett. 77, 24832486.CrossRefGoogle ScholarPubMed
Deutsch, C., Furukawa, H., Mima, K. & Nishihara, K. (2000). Erratum: Interaction fast ignitor concept. Phys. Rev. Lett. 31, 1140.CrossRefGoogle Scholar
Eliezer, S., Murakami, M. & Martinez-Val, J.M.M. (2007). Equation of state and optimum compression in inertial fusion energy. Laser Part. Beams 25, 585592.CrossRefGoogle Scholar
Firpo, M.C., Lifschitz, A.F., Lefebvre, E. & Deutsch, C. (2006). Early out-of-equilibrium beam-plasma evolution. Phys. Rev. Lett. 96, 115004-1-4.CrossRefGoogle ScholarPubMed
Flippo, K., Hegelich, B.M., Albright, B.J., Yin, L., Gautier, D.C., Letzring, S., Schollmeier, M., Schreiber, J., Schulze, R. & Fernandez, J.C. (2007). Laser-driven ion accelerators: Spectral control, monoenergetic ions and new acceleration mechanisms. Laser Part. Beams 25, 38.CrossRefGoogle Scholar
Hora, H. (2007). New aspects for fusion energy using inertial confinement. Laser Part. Beams 25, 3745.CrossRefGoogle Scholar
Johzaki, T., Sakagami, H., Nagatomo, H. & Mima, K. (2007). Holistic simulation for FIREX project with FI3. Laser Part. Beams 25, 621629.CrossRefGoogle Scholar
Kodama, R., Norreys, P.A., Mima, K., Dangor, A.E., Evans, R.G., Fujita, H., Kitagawa, Y., Krushelnik, K., Miyakoshi, T., Norimatsu, T., Rose, S.J., Shozaki, T., Shigemon, K., Sunahara, A., Tampo, M., Tanaka, K.A., Toyama, Y., Yamanaka, T. & Zepf, M. (2001). Fast heating of ultrahigh-density plasma as step towards laser fusion ignition. Nature 412, 798802.CrossRefGoogle ScholarPubMed
Kono, M. & Ichikawa, Y.H. (1973). Renormalization of wave-particle interaction in weakly turbulent plasmas. Prog. Theor. Phys. 49, 754763.CrossRefGoogle Scholar
Malik, H.K. (2007). Oscillating two stream instability of a plasma wave in a negative ion containing plasma with hot and cold positive ions. Laser Part. Beams 25, 397406.CrossRefGoogle Scholar
Mason, R.J. (2006). Heating mechanisms in short-pulse laser-driven cone targets. Phys. Rev. Lett. 96, 035001-1-4.CrossRefGoogle ScholarPubMed
Tabak, M., Hammer, J., Glinsky, M.E., Kruer, W.L., Wilks, S.C., Woodworth, J., Campbell, E.M., Perry, M.D. & Mason, R.J. (1994). Ignition and high-gain with ultrapowerful lasers. Phys. Plasmas 1, 16261634.CrossRefGoogle Scholar
Taguchi, T., Antonsen, T.M., Liu, C. & Mima, K. (2001). Structure formation and tearing of an MeV cylindrical electron beam in a laser-produced plasma. Phys. Rev. Lett. 86, 50555058.CrossRefGoogle Scholar
Weibel, E.S. (1959). Spontaneously growing transverse waves in a plasma due to an anisotropic velocity distribution. Phys. Rev. Lett. 2, 83.CrossRefGoogle Scholar
Yu, W., Yu, M.Y., Xu, H., Tian, Y.V., Chen, J. & Wong, A.Y. (2007). Intense local plasma heating by stopping of ultrashort ultraintense laser pulse in dense plasma. Laser Part. Beams 25, 631638.CrossRefGoogle Scholar