Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-25T20:30:47.821Z Has data issue: false hasContentIssue false

One-dimensional model of the electrostatic ion acceleration in the ultraintense laser–solid interaction

Published online by Cambridge University Press:  01 June 2004

M. PASSONI
Affiliation:
Dipartimento di Ingegneria Nucleare, Politecnico di Milano, Milan, Italy Istituto di Fisica del Plasma, Consiglio Nazionale delle Ricerche, Milan, Italy
M. LONTANO
Affiliation:
Istituto di Fisica del Plasma, Consiglio Nazionale delle Ricerche, Milan, Italy

Abstract

Effective ion acceleration of picosecond-duration well-collimated bunches in the strong relativistic interaction of a short laser pulse with a thin solid target has been experimentally demonstrated. In this work, with reference to the sharp rear solid–vacuum interface, where ion energization takes place, the one-dimensional Poisson–Boltzmann equation is analytically solved on a finite spatial interval whose extension is determined by requiring electron energy conservation, resulting in the consistent spatial distributions of the hot electrons created by the laser and of the corresponding electrostatic potential. Then, the equation of motions for an ensemble of test ions, initially distributed in a thin layer of the rear target surface, with different initial conditions, is solved and the energy spectrum corresponding to a given initial ion distribution is determined.

Type
Research Article
Copyright
© 2004 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arduini, G., Cambria, R., Canzi, C., Gerardi, F., Gottschalk, B., Leone, R., Sangaletti, L. & Silari, M. (1996). Physical specifications of clinical proton beams from a synchrotron. Med. Phys. 23, 939951.Google Scholar
Badziak, J., Woryna, e., Parys, P., Platonov, K.Y., Jablonski, S., Ryc, L., Vankov, A.B. & Wolowski, J. (2003). Generation of energetic protons from this foil targets irradiated by a high-intensity ultrashort laser pulse. Nucl. Instr. Methods In Physics Res. A 498, 503516.Google Scholar
Boody, F.P., Hoepfl, R., Hora, H. & Kelly, J.C. (1996). Laser-driven ion source for reduced-cost implantation of metal ions for strong reduction of dry friction and increased durability. Laser Part. Beams 14, 443448.Google Scholar
Borghesi, M., Campbell, D.H., Schiavi, A., Haines, M.G., Willi, O., Mackinnon, A.J., Patel, P., Gizzi, L.A., Galimberti, M., Clarke, R.J., Pegoraro, F., Ruhl, H. & Bulanov, S.V. (2002). Electric field detection in laser-plasma interaction experiments via the proton imaging technique. Phys. Plasmas 9, 22142220.Google Scholar
Bulanov, S.V. & Khoroshkov, V.S. (2002). Feasibility of using laser ion accelerators in proton therapy. Plasma Phys. Rep. 28, 453456.Google Scholar
Bulanov, S.V., Esirkepov, T.Zh., Kamenets, F.F., Kato, Y., Kuznetsov, A.V., Nishihara, K., Pegoraro, F., Tajima, T. & Khoroshkov, V.S. (2002). Generation of high-quality charged particle beams during the acceleration of ions by high-power laser radiation. Plasma Phys. Rep. 28, 975991.Google Scholar
Clark, E.L., Kurshelnick, K., Zepf, M., Beg, F.N., Tatarakis, M., Machacek, A., Santala, M.I.K., Watts, I., Norreys, P.A. & Dangor, A.E. (2000a). Energetic heavy-ion and proton generation from ultraintense laser-plasma interactions with solids. Phys. Rev. Lett. 85, 16541657.Google Scholar
Clark, E.L., Krushelnick, K., Davirs, J.R., Zepf, M., Tatarakis, M., Beg, F.N., Machacek, A., Norreys, P.A., Santala, M.I.K., Watts, I. & Dangor, A.E. (2000b). Measurements of energetic proton transport through magnetized plasma from intense laser interactions with solids. Phys. Rev. Lett. 84, 670673.Google Scholar
Crow, J.E., Auer, P.L. & Allen, J.E. (1975). The expansion of a plasma into a vacuum. J. Plasma Phys. 14, 6576.Google Scholar
Davies, J.R. (2002). Proton acceleration by fast electrons in laser-solid interactions. Laser Part. Beams 20, 243253.Google Scholar
Esirkepov, T.Zh., Bulanov, S.V., Nishihara, K., Tajima, T., Pegoraro, F., Khoroshkov, V.S., Mima, K., Daido, H., Kato, Y., Kitagawa, Y., Nagai, K. & Sakabe, S. (2002). Proposed double-layer target for the generation of high-quality laser-accelerated ion beams. Phys. Rev. Lett. 89, 175003.Google Scholar
Fourkal, E., Shahine, B., Ding, M., Li., J., Tajima, T. & Ma, C. (2002). Particle in cell simulation of laser accelerated proton beams for radiation therapy. Med. Phys. 29, 27882798.Google Scholar
Gemmel, D.S. (1974). Channeling and related effects in the motion of charged particles through crystals. Rev. Mod. Phys. 46, 129227.Google Scholar
Haseroth, H. & Hill, C.E. (1996). Multicharged ion sources for pulsed accelerators. Rev. Sci. Instr. 67, 945949.Google Scholar
Hatchett, S.P., Brown, C.G., Cowan, T.E., Henry, E.A., Johnson, J.S., Key, M.H., Koch, J.A., Langdon, A.B., Lasinski, B.F., Lee, R.W., Mackinnon, A.J., Pennington, D.M., Perry, M.D., Phillips, T.W., Roth, M., Sangster, T.C., Singh, M.S., Snavely, R.A., Stoyer, M.A., Wilks, S.C. & Yasuike, K. (2000). Electron, photon, and ion beams from the relativistic interaction of Petawatt laser pulses with solid targets. Phys. Plasmas 7, 20762082.Google Scholar
Hegelich, M., Karsch, S., Pretzler, G., Habs, D., Witte, K., Guenther, W., Allen, M., Blazevic, A., Fuchs, J., Gauthier, J.C., Geissel, M., Audebert, P., Cowan, T. & Roth, M. (2002). MeV ion jets from short-pulse-laser interaction with this foils. Phys. Rev. Lett. 89, 085002.Google Scholar
Khishimoto, Y., Mima, K., Watanabe, T. & Nishikawa, K. (1983). Analysis of fast-ion velocity distributions in laser plasmas with a truncated Maxwellian velocity distribution of hot electrons. Phys. Fluids 26, 23082315.Google Scholar
Krushelnick, K., Clark, E.L., Zepf, M., Davies, J.R., Beg, F.N., Machacek, A., Santala, M.I.K., Tatarakis, M., Watts, I., Norreys, P.A. & Dangor, A.E. (2000). Energetic proton production from relativistic laser interaction with high density plasmas. Phys. Plasmas 7, 20552061.Google Scholar
Landau, L.D. & Lifshitz, E.M. (1968). Statistical Physics, 2nd ed. Oxford: Pergamon.
Lefebvre, E. & Bonneaud, G. (1997). Nonlinear electron heating in ultrahigh-intensity-laser-plasma interaction. Phys. Rev. E 55, 10111014.Google Scholar
Mora, P. (2003). Plasma expansion into a vacuum. Phys. Rev. Lett. 90, 185002.Google Scholar
Murakami, Y., Kitagawa, Y., Sentoku, Y., Mori, M., Kodama, R., Tanaka, K.A., Mima, K. & Yamanaka, T. (2001). Observation of proton rear emission and possible gigagauss scale magnetic fields from ultra-intense laser illuminated plastic target. Phys. Plasmas 8, 41384143.Google Scholar
Nemoto, K., Maksimchuk, A., Banerjee, S., Flippo, K., Mourou, G., Umstadter, D. & Bychenkov, V.Y. (2001). Laser-triggered ion acceleration and table top isotope production. Appl. Phys. Lett. 78, 595597.Google Scholar
Passoni, M., Tikhonchuk, V.T., Lontano, M. & Bichenkov, V.Yu. (2004). Charge separation effects in solid targets and ion acceleration with a two temperature electron distribution. Phys. Rev. E 69, 026411.Google Scholar
Pukhov, A. (2001). Three-dimensional simulations of ion acceleration from a foil irradiated by a short-pulse laser. Phys Rev. Lett. 86, 35623565.Google Scholar
Roth, M., Cowan, T.E., Key, M.H., Hatchett, S.P., Brown, C., Fountain, W., Johnson, J., Pennington, D.M., Snavely, R.A., Wilks, S.C., Yasuike, K., Ruhl, H., Pegoraro, F., Bulanov, S.V., Campbell, E.M., Perry, M.D. & Powell, H. (2001). Fast ignition by intense laser-accelerated proton beams. Phys. Rev. Lett. 86, 436439.Google Scholar
Santala, M.I.K., Zepf, M., Beg, F.N., Clark, E.L., Dangor, A.E., Krushelnick, K., Tatarakis, M., Watts, I., Ledingham, K.W.D., McCanny, T., Spencer, I., Machacek, A.C., Allott, R., Clarke, R.J. & Norreys, P.A. (2001). Production of radioactive nuclides by energetic protons generated from intense laser-plasma interactions. Appl. Phys. Lett. 78, 1921.Google Scholar
Snavely, R.A., Key, M.H., Hatchett, S.P., Cowan, T.E., Roth, M., Phillips, T.W., Stoyer, M.A., Henry, E.A., Sangster, T.C., Singh, M.S., Wilks, S.C., Mackinnon, A., Offenberger, A., Pennington, D.M., Yasuike, K., Langdon, A.B., Lasinski, B.F., Johnson, J., Perry, M.D. & Campbell, E.M. (2000). Intense high-energy proton beams from petawatt-laser irradiation of solids. Phys. Rev. Lett. 85, 29452948.Google Scholar
Tikhonchuk, V.T. (2002). Interaction of a beam of fast electrons with solids. Phys. Plasmas 9, 14161421.Google Scholar
True, M.A., Albritton, J.R. & Williams, E.A. (1981). Fast ion production by suprathermal electrons in laser fusion plasma. Phy. Fluids 24, 18851893.Google Scholar
Wickens, L.M., Allen, J.E. & Rumsby, P.T. (1978). Ion emission from laser-produced plasma with two electron temperatures. Phys. Rev. Lett. 41, 243246.Google Scholar
Wilks, S.C., Kruer, W.L., Tabak, M. & Langdon, A.B. (1992). Absorption of ultra-intense laser-pulses. Phys. Rev. Lett. 69, 13831386.Google Scholar
Wilks, S.C., Langdon, A.B., Cowan, T.E., Roth, M., Singh, M., Hatchett, S., Key, M.H., Pennington, D., Mackinnon, A. & Snavely, R.A. (2001). Energetic proton generation in ultra-intense laser-solid interactions. Phys. Plasmas 8, 542549.Google Scholar