Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-19T10:44:56.571Z Has data issue: false hasContentIssue false

Observation of a U-like shaped velocity evolution of plasma expansion during a high-power diode operation

Published online by Cambridge University Press:  24 July 2014

Dan Cai*
Affiliation:
College of Optoelectric Science and Engineering, National University of Defense Technology, Hunan, China
Lie Liu
Affiliation:
College of Optoelectric Science and Engineering, National University of Defense Technology, Hunan, China
Jinchuan Ju
Affiliation:
College of Optoelectric Science and Engineering, National University of Defense Technology, Hunan, China
Xuelong Zhao
Affiliation:
College of Optoelectric Science and Engineering, National University of Defense Technology, Hunan, China
Yongfeng Qiu
Affiliation:
College of Optoelectric Science and Engineering, National University of Defense Technology, Hunan, China
*
Address correspondence and reprint requests to: Dan Cai, College of Optoelectric Science and Engineering, National University of Defense Technology, Hunan 410073, China. E-mail: [email protected]

Abstract

The diode closure velocity has been investigated in pulsed high-power diodes operating with the mode of space-charge-limed bipolar flow. A combination of time-resolved electrical and optical diagnostics has been employed to study the basic phenomenon of the temporal and spatial evolutions of the diode plasmas. The results from the two diagnostics were compared. Since anode plasma rapidly expands, the diode closure speed vd increases in the end of the current pulse. The diode closure speed vd can be divided into three stages with a U-like whole shape. The obtained results can be used in various applications, for instance, the high-power microwave sources, electron-beam plasma heating, and material treating.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Benford, J. & Benford, G. (1997). Survey of pulse shortening in high power microwave sources. IEEE Trans. Plasma Sci. 25, 311.CrossRefGoogle Scholar
Booske, J.H. (2008). Plasma physics and related challenges of millimeter-wave-to-terahertz and high power microwave generation. Phys. Plasmas 15, 055502.CrossRefGoogle Scholar
Beilis, I.I. (2007). Laser plasma generation and plasma interaction with ablative target. Laser Part. Beams 25, 53.CrossRefGoogle Scholar
Child, C.D. (1911). Discharge from hot CaO. Phys. Rev. 32, 492.Google Scholar
Gleizer, J.Z., Hadas, Y. & Krasik, Y.E. (2008). Multicapillary cathode controlled by a ferroelectric plasma source. Europhys. Lett. 82, 55001.CrossRefGoogle Scholar
Krasik, Y.E., Dunaevsky, A. & Krokhmal, A. (2001). Emission properties of different cathodes at E ≪105 V/cm. J. Appl. Phys. 89, 2379.CrossRefGoogle Scholar
Korovin, S.D., Mesyats, G.A., Pegel, I.V., Polevin, S.D. & Tarakanov, V.P. (2000). Pulsewidth Limitation in the Relativistic Backward Wave Oscillator. IEEE Trans. Plasma Sci. 28, 485.Google Scholar
Langmuir, I. (1911). Thermal conduction and convection in gases at extremely high temperatures. Phys. Rev. 21, 419.CrossRefGoogle Scholar
Liu, L., Li, L., Zhang, J., Zhang, X., Wen, J. & Liu, Y. (2008). A series of tufted carbon fiber cathodes designed for different high power microwave sources. Rev. Sci. Instrum. 79, 064701.CrossRefGoogle ScholarPubMed
Li, L., Liu, L., Wen, J., Men, T. & Liu, Y. (2008). An intense-current electron beam source with low-level plasma formation. J. Phys. D: Appl. Phys. 41, 125201.CrossRefGoogle Scholar
Lie, L., Wan, H., Zhang, J., Wen, J.C., Zhang, Y.Z. & Liu, Y.G. (2004). Fabrication of carbon-fiber cathode for high-power microwave applications. IEEE Trans. Plasma Sci. 32, 1742.CrossRefGoogle Scholar
Miller, R.B. (1982). An Introduction to the Physics of Intense Charged Particle Beams. New York: Plenum.CrossRefGoogle Scholar
Mesyats, G.A. (1995). Ectons mechanism of vacuum arc cathode spot. IEEE Trans. Plama Sci. 23, 879.CrossRefGoogle Scholar
Mesyats, G.A. (2005). Ectons and their role in plasma processes. Plasma Phys. Contr. Fusion 47, A109.CrossRefGoogle Scholar
Pushkarev, A.I. & Sazonov, R.V. (2009). Research of cathode plasma speed in planar diode with explosive emission cathode. IEEE Trans. Plasma Sci. 37, 1901.CrossRefGoogle Scholar
Shiffler, D., Heidger, S., Cartwright, K., Vaia, R., Liptak, D., Price, G., LaCour, M. & Golby, K. (2008). Materials characteristics and surface morphology of a cesium iodide coated carbon velvet cathode. J. Appl. Phys. 103, 013302.CrossRefGoogle Scholar
Shiffler, D., Haworth, M., Cartwright, K., Umstattd, R., Ruebush, M., Heidger, S., LaCour, M., Golby, K., Sullivan, D., Duselis, P. & Luginsland, J. (2008). Review of cold cathode research at the Air Force Research Laboratory. IEEE Trans. Plasma Sci. 36, 718.CrossRefGoogle Scholar
Saveliev, Y.M., Sibbett, W. & Parkes, D.M. (2003). On anode effects in explosive emission diodes. J. Appl. Phys. 94, 5776.CrossRefGoogle Scholar
Shiffler, D.A., Luginsland, J.W., Umstattd, R.J., LaCour, M., Golby, K., Haworth, M.D., Ruebush, M., Zagar, D., Gibbbs, A. & Spencer, T.A. (2002). Effects of anode materials on the performance of explosive field emission diodes. IEEE Trans. Plasma Sci. 30, 1232.CrossRefGoogle Scholar
Saveliev, Y.M., Sibbett, W. & Parkes, D.M. (2002). Perveance of a planar diode with explosive emission finite-diameter cathodes. Appl. Phys. Lett. 81, 2343.CrossRefGoogle Scholar
Vekselman, V., Gleizer, J., Yarmolich, D., Felsteiner, J., Krasik, Y., Liu, L. & Bernshtam, V. (2008). Plasma characterization in a diode with a carbon-fiber cathode. Appl. Phys. Lett. 93, 081503.CrossRefGoogle Scholar
Watrous, J.J., Luginsland, J.W. & Frese, M.H. (2001). Current and current density of a finite-width, space-charge-limited electron beam in two-dimensional, parallel-plate geometry. Phys. Plasmas 8, 4202.CrossRefGoogle Scholar
Yarmolich, D., Vekselman, V., Gurovich, V.T., Gleizer, J.Z., Felsteiner, J. & Krasik, Y.E. (2008). Micron-scale width multislot plasma cathode. Phys. Plasma 15, 123507.CrossRefGoogle Scholar
Yarmolich, D., Vekselman, V., Gurovich, V.T. & Krasik, Y.E. (2008). Coulomb micro-explosions of ferroelectric ceramics. Phys. Rev. Lett. 100, 075004.CrossRefGoogle Scholar
Yang, J., Shu, T. & Fan, Y.W. (2013). Time-and-space resolved comparison of plasma expansion velocities in high-power diodes with velvet cathodes. Laser Part. Beams 31, 129.CrossRefGoogle Scholar
Zhang, X.L., Fletcher, R.S. & Rolston, S.L. (2008). Ultracold plasma expansion in a magnetic field. Phys. Rev. Lett. 100, 235002.CrossRefGoogle ScholarPubMed