Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-23T05:11:03.318Z Has data issue: false hasContentIssue false

Numerical simulation of Raman and Brillouin laser-pulse amplification in a magnetized plasma

Published online by Cambridge University Press:  08 April 2016

Magdi Shoucri*
Affiliation:
Institut de recherche d'Hydro-Québec (IREQ), Varennes, Québec, CanadaJ3X1S1
*
Address correspondence and reprint requests to: M. Shoucri, Institut de recherche d'Hydro-Québec (IREQ), Varennes, Québec, CanadaJ3X1S1. E-mail: [email protected]

Abstract

We apply an Eulerian Vlasov code to study the amplification of an ultra-short seed pulse via stimulated Raman and Brillouin backscattering of energy from a long pump pulse, assumed at constant amplitude, in a plasma embedded in an external magnetic field. Detailed analysis of the spectra developed during the amplification process are presented, together with the evolution showing the pump depletion, accompanied by the counter-propagating seed-pulse amplification, compression and increased steepness of the waveform. In addition to the problem of the amplification of ultra-short seed pulses, there is an obvious academic interest in the study of problems of amplification of electromagnetic waves observed in many situations in laboratory plasmas and in the magnetosphere and other geophysical situations, such as in the environments of planets, where important variations in the presence and strength of magnetic fields are observed. The numerical code solves a one-dimensional relativistic Vlasov–Maxwell set of equations for a plasma in a magnetic field for both electrons and ions. We also apply the code to the problem of wakefield acceleration. The absence of noise in the Eulerian Vlasov code allows one to follow the evolution of the system with an accurate representation of the phase-space structures of the distribution functions.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Andreev, A., Riconda, C., Tikhonchuk, V. & Weber, S. (2006). Short light pulse amplification and compression by stimulated Brillouin in plasmas in the strong coupling regime. Phys. Plasmas 13, 053110/1–5.Google Scholar
Briand, C. (2015). Langmuir waves across the heliosphere. J. Plasma Phys. 81, 127.CrossRefGoogle Scholar
Denavit, J. & Sudan, R.N. (1975). Whistler sideband instability. Phys. Fluids 18, 575584.Google Scholar
Ghizzo, A., Bertrand, P., Shoucri, M., Johnston, T.W., Fijalkow, E. & Feix, M. (1990). A Vlasov code for the numerical solution of stimulated Raman scattering. J. Comput. Phys. 90, 431457.Google Scholar
Ghizzo, A., Bertrand, P., Shoucri, M., Johnston, T.W., Fijalkow, E., Feix, M. & Demchenko, V.V. (1992). Study of laser-plasma beat wave current drive with an Eulerian Vlasov code. Nucl. Fusion 32, 4565.Google Scholar
Grulke, O., Buttenschön, B. & Fahrenkamp, N. (2015). A high density helicon discharge for the advanced plasma accelerators AWAKE. 42nd EPS Conf. Plasma Physics, Lisbonne P2.208.Google Scholar
Humphrey, K.A., Trines, R.M.G.M., Fiuza, F., Speirs, D.C., Norreys, P., Cairns, R.A., Silva, L.O. & Bingham, R. (2013). Effect of collisions on amplification of laser beams by Brillouin scattering in plasmas. Phys. Plasmas 20, 102114/1–4.Google Scholar
Lancia, L., Marquès, J.-R., Nakatsutsumi, M., Riconda, C., Weber, S., Hüller, S., Mancic, A., Antici, P., Tikhonchuk, V.T., Héron, A., Audebert, P. & Fuchs, J. (2010). Experimental evidence of short light amplification using strong-coupling stimulated Brillouin scattering in the pump depletion regime. Phys. Rev. Lett. 104, 025001/1–4.Google Scholar
Lehmann, G., Schluck, F. & Spatschek, K.H. (2012). Regions for Brillouin seed pulse growth in relativistic laser-plasma interaction. Phys. Plasmas 19, 093120.CrossRefGoogle Scholar
Lehmann, G. & Spatschek, K.H. (2013). Nonlinear Brillouin amplification of finite-duration seeds in the strong coupling regime. Phys. Plasmas 20, 073112/1–10.Google Scholar
Lehmann, G., Spatschek, K.H. & Sewell, G. (2013). Pulse shaping during Raman-seed amplification for short laser pulses. Phys. Rev. E 87, 063107/1–9.Google Scholar
Malkin, V.M. & Fisch, N.J. (2014). Key plasma parameters for resonant backward Raman amplification in plasma. Eur. Phys. J. Spec. Top. 223, 1157.Google Scholar
Malkin, V.M., Shvets, G. & Fisch, N.J. (1999). Fast compression of laser beams to highly overcritical powers. Phys. Rev. Lett. 82, 444844451.Google Scholar
Montgomery, D.S., Albright, B.J., Barnak, D.H., Chang, P.Y., Davies, J.R., Fiksel, G., Froula, D.H., Kline, J.L., MacDonald, M.J., Sefkow, A.B., Yin, L. & Betti, R. (2015). Use of external magnetic fields in hohlraum plasmas to improve laser-coupling. Phys. Plasmas 22, 010703/1–13.Google Scholar
Mourou, G.A., Fisch, N.J., Malkin, V.M., Toroker, Z., Khazanov, A., Sergeev, M., Tajima, T. & Le Garrec, B. (2012). Exawatt-Zetawatt pulse generation and applications. Opt. Commun. 285, 720.Google Scholar
Riconda, C., Weber, S., Lancia, L., Marques, J.R., Mourou, G.A. & Fuchs, J. (2013). Spectral characteristics of ultra-short laser pulses in plasma amplifiers. Phys. Plasmas 20, 083115.Google Scholar
Shoucri, M. (2008 a). Numerical Solution of Hyperbolic Differential Equations. N.Y.: Nova Science Publisher.Google Scholar
Shoucri, M. (2008 b). Numerical simulation of wake-field acceleration using an Eulerian Vlasov code. Commun. Comput. Phys. 4, 703718.Google Scholar
Shoucri, M. & Storey, L.R.O. (1986). Motion of an electron bunch through a plasma. Phys. Fluids 29, 262.CrossRefGoogle Scholar
Shoucri, M., Matte, J.-P. & Vidal, F. (2014). A Vlasov code simulation of plasma-based backward Raman amplification in underdense plasma. 41 rstEPS Conf. Plasma Physics, Berlin, P5.093.Google Scholar
Shoucri, M., Matte, J.-P. & Vidal, F. (2015). Relativistic Eulerian Vlasov simulations of the amplification of seed pulses by Brillouin backscattering in plasmas. Phys. Plasmas 22, 053101/1–13.Google Scholar
Summers, D., Tang, R., Omura, Y. & Lee, D. (2013). Parameter spaces for linear and nonlinear whistler-mode waves. Phys. Plasmas 20, 072110/1–10.Google Scholar
Strozzi, D., Perkins, L.J., Marinak, M.M., Larson, D.J., Koning, J.M. & Logan, B.G. (2015). Imposed magnetic field and hot electron propagation in inertial fusion hohlraums. J. Plasma Phys. 81, 475810603/1–21.CrossRefGoogle Scholar
Tejero, E.M., Crabtree, C., Blackwell, D.D., Amatucci, W.E., Mithaiwala, M., Ganguli, G. & Rudakov, L. (2015). Laboratory studies of nonlinear wave processes in the Van Allen radiation belts. Phys. Plasmas 22, 091503/1–7.CrossRefGoogle Scholar
Toroker, Z., Malkin, V.M. & Fisch, N.J. (2014). Backward Raman amplification in the Langmuir wavebreaking regime. Phys. Plasmas 21, 113110/1–10.Google Scholar
Trines, R.M.G.M., Fiuza, F., Bingham, R., Fonseca, R.A., Silva, L.O., Cairns, R.A. & Norreys, P.A. (2011). Simulations of efficient Raman amplification into the multipetawatt regime. Nat. Phys. 7, 87.Google Scholar
Wang, T., Clark, D., Strozzi, D., Wilks, S., Martins, S. & Kirkwood, R. (2010). Particle-in-cell simulations of kinetic effects in plasma-based backward Ramam amplification in underdense plasmas. Phys. Plasmas 17, 023109/1–9.Google Scholar
Weber, S., Riconda, C., Lancia, L., Marques, J.-R., Mourou, G.A. & Fuchs, J. (2013). Amplification of ultra-short laser pulses by Brillouin backscattering in plasmas. Phys. Rev. Lett. 111, 055004.Google Scholar