Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-23T15:45:27.808Z Has data issue: false hasContentIssue false

Numerical modeling of heavy ion induced stress waves in solid targets

Published online by Cambridge University Press:  17 December 2007

N. A. Tahir*
Affiliation:
Gesellschaft für Schwerionenforschung, Darmstadt, Germany
V. Kim
Affiliation:
Institute for Problems of Chemical Physics, Chernogolovka, Russia
A. Matvechev
Affiliation:
Institute for Problems of Chemical Physics, Chernogolovka, Russia
A. Ostrik
Affiliation:
Institute for Problems of Chemical Physics, Chernogolovka, Russia
I. V. Lomonosov
Affiliation:
Institute for Problems of Chemical Physics, Chernogolovka, Russia
A. R. Piriz
Affiliation:
E.T.S.I. Industriales, Universidad de Castilla-La Mancha, Ciudad Real, Spain
J.J. Lopez Cela
Affiliation:
E.T.S.I. Industriales, Universidad de Castilla-La Mancha, Ciudad Real, Spain
D.H.H. Hoffmann
Affiliation:
Institut für Kernphysik, Technische Universität Darmstadt, Germany Gesellschaft für Schwerionenforschung, Darmstadt, Germany
*
Address correspondence and reprint requests to: N. A. Tahir, Gesellschaft für Schwerionenforschung Darmstadt, Planckstrasse 1, 64291 Darmstadt, Germany. E-mail: [email protected]

Abstract

This paper presents numerical simulations of thermodynamic and hydrodynamic response for solid targets that are irradiated with strongly bunched, highly focused, intense beams of energetic uranium ions. The main purpose of this work is to study the behavior of thermal stress waves induced in such targets by the incident ion beam. These theoretical studies will complement the experimental investigations that will be carried out in the near future at the Gesellschaft für Schwerionenforschung (GSI) plasma physics experimental area. These experiments will be performed using the existing heavy ion synchrotron, SIS18, which delivers 4 × 109 uranium ions in a single bunch with a length of about 125 ns. Other time structures, for example, a pulse that consists of a series of bunches, are also possible. The particle energy is on the order of 400 MeV/u and the beam can be focused to sub millimeter radius. This information concerning material response under intense beam loading will have important implications on designing a viable production target for the superconducting fragment separator, Super-FRS, which is going to be constructed at the future facility for antiproton and ion research (FAIR), Darmstadt, Germany, for the production and separation of exotic nuclei.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bushman, A.V., Kanel, G.I., Ni, A.L. & Fortov, V.E. (1993). Thermophysics and dynamics of intense pulsed loadings. London, UK: Taylor and Francis.Google Scholar
Fabich, A. & Lettery, J. (2003). Experimental observation of protoninduced shocks and magneto-fluid-dynamics in liquid metal. Nucl. Instrum. Meth Phys. Res. A 503, 336.CrossRefGoogle Scholar
Geissel, H., Weick, H., Münzenberg, G., Chichkine, V., Yavor, M., Aumann, T., Behr, K.H., Böhmer, A., Brünle, A., Burkahrd, K., Benlliure, J., Cortina-Gil, D., Chulkov, L., Dael, A., Ducret, J.-E., Emling, H., Franczak, B., Friese, J., Gastineau, B., Gerl, J., Gernhäuser, R., Hellström, M., Johnson, B., Kojouharova, J., Kulessa, R., Kindler, B., Kurz, N., Lommel, B., Mittig, W., Moritz, G., Mühle, Nolen, J.A., Nyman, G., Rousell-Chomaz, P., Scheindenberger, C., Schmidt, K.-H., Schrieder, G., Sherrill, B.M., Simon, H., Sümmerer, K., Tahir, N.A., Vysotsky, V., Wollnik, H. & Zeller, A.F. (2003). The Super-FRS project at GSI. Nucl. Instrum. Meth Phys. Res. B 204, 71.CrossRefGoogle Scholar
Heidenreich, G. (2002). Carbon and beryllium targets at PSI. High Inten. High Bright. Hadron Beams 642, 124.Google Scholar
Henning, W.F. (2004). The future GSI facility. Nucl. Instrum. Meth. Phys. Res. B. 214, 155.CrossRefGoogle Scholar
Hoffmann, D.H.H., Blazevic, A., Ni, P., Rosmej, O., Roth, M., Tahir, N.A., Tauschwitz, A., Udrea, S., Varentsov, D., Weyrich, K. & Maron, Y. (2005). Present and future perspectives of high energy density physics with intense ions and laser beams. Laser Part. Beams 23, 47.CrossRefGoogle Scholar
Lopez Cela, J.J., Piriz, A.R., Serena Moreno, M. & Tahir, N.A. (2006). Numerical simulations of Rayleigh–Taylor instability in elastic solids. Laser Part. Beams 24, 427.CrossRefGoogle Scholar
Mazumder, M. K. (1970). Laser doppler velocity measurement without directional ambiguity by using frequency shifted incident beams. Appl. Phys. Lett. 16, 462.CrossRefGoogle Scholar
Nolen, J.A., Reed, C.B., Hassanein, A., Novick, V.J., Plotkin, P., Specht, J.R., Morrissey, D.J., Ottarson, J.H. & Sherrill, B.M. (2003). An adjustable thickness Li/Be target for fragmentation of 4-kW heavy ion beams. Nucl. Instrum. Meth Phys. Res. B 204, 293.CrossRefGoogle Scholar
Piriz, A.R., Portugues, R.F., Tahir, N.A., Hofmann, D.H.H. (2002). Implosion of multilayered cylindrical targets driven by intense heavy ion beams. Phys. Rev. E 66, 056403.CrossRefGoogle ScholarPubMed
Piriz, A.R., Temporal, M., Lopez Cela, J.J., Tahir, N.A. & Hoffmann, D.H.H. (2003). Symmetry analysis of cylindrical implosions driven by high-frequency rotating ion beams. Plasma Phys. Contr. Fusion 45, 1733.CrossRefGoogle Scholar
Piriz, A.R., Temporal, M., Lopez Cela, J.J., Tahir, N.A. & Hoffmann, D.H.H. (2005). Rayleigh-Taylor instability in elastic solids. Phys. Rev. E 72, 056313.CrossRefGoogle ScholarPubMed
Piriz, A.R., Lopez Cela, J.J., Serena Moreno, M., Tahir, N.A. & Hoffmann, D.H.H. (2006). Thin plate effects in the Rayleigh-Taylor instability of elastic solids. Laser Part. Beams 24, 275.CrossRefGoogle Scholar
Piriz, A.R., Tahir, N.A., Lopez Cela, J.J., Cortazar, O.D., Serna Moreno, M.C., Temporal, M. & Hoffmann, D.H.H. (2007). Analytic models for the design of the LAPLAS target. Contrib. Plasma Phys. 47, 213.CrossRefGoogle Scholar
Piriz, A.R., Lopez Cela, J.J., Serna Moreno, M.C., Cortazar, O.D., Tahir, N.A. & Hoffmann, D.H.H. (2007). A new approach to Rayleigh–Taylor instability: Applications to accelerated elastic solids. Nucl. Instrum. Meth Phys. Res. A 577, 250.CrossRefGoogle Scholar
Ray, A., Srivastava, M.K., Kodayya, G. & Menon, S.V.G. (2006). Improved equation of state of metals in the liquid-vapor region. Laser Part. Beams 24, 437.CrossRefGoogle Scholar
Tahir, N.A., Hoffmann, D.H.H., Kozyreva, A., Shutov, A., Maruhn, J.A., Neuner, U., Tauschwitz, A., Spiller, P. & Bock, R. (2000 a). Shock compression of condensed matter using intense beams of energetic heavy ions. Phys. Rev. E. 61, 1975.CrossRefGoogle ScholarPubMed
Tahir, N.A., Hoffmann, D.H.H., Kozyreva, A., Shutov, A., Maruhn, J.A., Neuner, U., Tauschwitz, A., Spiller, P. & Bock, R. (2000 b). Equation-of-state properties of high-energy-density matter using intense heavy ion beams with an annular focal spot. Phys. Rev. E 62,1224.CrossRefGoogle ScholarPubMed
Tahir, N.A., Kozyreva, Spiller, P., Hoffmann, D.H.H. & Shutov, A. (2001 a). Necessity of bunch compression for heavy-ion-induced hydrodynamics and studies of beam fragmentation in solid targets at a proposed synchrotron facility. Phys. Rev. E. 63, 036407.CrossRefGoogle Scholar
Tahir, N.A., Hoffmann, D.H.H., Kozyreva, A., Tauschwitz, A., Shutov, A., Maruhn, J.A., Spiller, P., Nuener, U., Jacoby, J., Roth, M., Bock, R., Juranek, H. & Redmer, R. (2001 b). Metallization of hydrogen using heavy-ion-beam implosion of multi-layered targets. Phys. Rev. E 63, 016402.CrossRefGoogle Scholar
Tahir, N.A., Juranek, H., Shutov, A., Redmer, R., Piriz, A.R., Temporal, M., Varentsov, D., Udrea, S., Hoffmann, D.H.H., Deutsch, C., Lomonosov, I. & Fortov, V. E. (2003 b). Influence of the equation of state on the compression and heating of hydrogen. Phys. Rev. B. 67, 184101.CrossRefGoogle Scholar
Tahir, N.A., Winkler, M., Kojouharova, J., Rousell-Chomaz, P., Chichkine, V., Geissel, H., Hoffmann, D.H.H., Kindler, B., Landre-Pellemoine, F., Lommel, B., Mittig, W., Münzenberg, G., Shutov, A., Weick, H. & Yavor, M. (2003 a). High-power production targets for the Super-FRS using a fast extraction scheme. Nucl. Instrum. Meth. Phys. Res. B 204, 282.CrossRefGoogle Scholar
Tahir, N.A., Adonin, A., Deutsch, C., Fortov, V.E., Grandjouan, N., Geil, B., Gryaznov, V., Hoffmann, D.H.H., Kulish, M., Lomonosov, I.V., Mintsev, V., Ni, P., Nikolaev, D., Piriz, A.R., Shilkin, N., Spiller, P., Shuto, A., Temporal, M., Ternovoi, V., Udrea, S.Varentsov, D. (2005 b). Studies of heavy ion-induced highenergy density states in matter at the GSI Darmstadt SIS-18 and future FAIR facility. Nucl. Instrum. Meth. Phys. Res. A 544, 16.CrossRefGoogle Scholar
Tahir, N.A., Deutsch, C., Fortov, V.E., Gryaznov, V., Hoffmann, D.H.H., Kulish, M., Lomonosov, I.V., Mintsev, V., Ni, P., Nikolaev, D., Piriz, A.R.,Shilkin, N., Spiller, P., Shutov, A., Temporal, M., Ternovoi, V., Udrea, S. & Varentsov, D. (2005 c). Proposal for the study of thermophysical properties of high-energy-density matter using current and future heavy ion accelerator facilities at GSI Darmstadt. Phys. Rev. Lett. 95, 035001.CrossRefGoogle Scholar
Tahir, N.A., Weick, H., Iwase, H., Geissel, H., Hoffmann, D.H.H., Kindler, B., Lommel, B., Radon, T., Münzenberg, G. & Sümmerer, K. (2005 d). Calculations of high-power production target and beamdump for the GSI future Super-FRS for a fast extraction scheme at the FAIR facility. J. Phys. D: Appl. Phys. 38, 1828.CrossRefGoogle Scholar
Tahir, N.A., Goddard, B., Kain, V., Schmidt, R., Shutov, A., Lomonosov, I.V., Piriz, A.R., Temporal, M., Hoffmann, D.H.H. & Fortov, V.E. (2005 e). Impact of 7-Tev/c large hadron collider proton beam on a copper target. J. Appl. Phys. 97, 083532.CrossRefGoogle Scholar
Tahir, N.A., Kain, V., Schmidt, R., Shutov, A., Lomonosov, I.V., Gryaznov, V., Piriz, A.R., Temporal, M., Hoffmann, D.H.H. & Fortov, V.E. (2005 d). The CERN large hadron collider as a tool to study high-energy-density physics. Phys. Rev. Lett. 94, 135004.CrossRefGoogle Scholar
Tahir, N.A., Spiller, P., Udrea, S., Cortazar, O.D., Deutsch, C., Fortov, V.E., Gryaznov, V., Hoffmann, D.H.H., Lomonosov, I.V., Ni, P., Piriz, A.R., Shutov, A., Temporal, M. & Varentsov, D. (2006). Studies of equation-of-state properties of high-energy density matter using intense heavy ion beams at the future FAIR facility: The HEDgeHOB collaboration. Nucl. Instrum. Meth. Phys. Res. B 245, 85.CrossRefGoogle Scholar
Tahir, N.A., Spiller, P., Shutov, A., Lomonosov, I.V., Gryaznov, V., Piriz, A.R., Wouchuk, G., Deutsch, C., Fortov, V.E., Hoffmann, D.H.H. & Schmidt, R. (2007). HEDgeHOB: High-energy density matter generated by heavy ion beams at the future facility for antiprotons and ion research. Nucl. Instrum. Meth. Phys. Res. A 577, 238.CrossRefGoogle Scholar
Tahir, N.A., Piriz, A.R., Shutov, A., Lomonosov, I.V., Gryaznov, V., Wouchuk, G., Deutsch, C., Spiller, P., Fortov, V.E., Hoffmann, D.H.H. & Schmidt, R. (2007). Survey of theoretical work for the proposed HEDgeHOB collaboration: HIHEX and LAPLAS. Contrib. Plasma Phys. 47, 223.CrossRefGoogle Scholar
Tahir, N.A., Kim, V., Grigoriev, D.A., Piriz, A.R., Weick, H., Geissel, H. & Hoffmann, D.H.H. (2007). High energy density physics problems related to liquid jet lithium target for Super-FRS fast extraction scheme. Laser Part. Beams 25, 295.CrossRefGoogle Scholar
Temporal, M., Lopez-Cela, J.J., Piriz, A.R., Grandjouan, N., Tahir, N.A. & Hoffmann, D.H.H. (2003). Numerical analysis of a multilayered cylindrical target compression driven by a rotating intense heavy ion beam. Laser Part. Beams 21, 609.CrossRefGoogle Scholar
Temporal, M., Lopez-Cela, J.J., Piriz, A.R., Grandjouan, N., Tahir, N.A. & Hoffmann, D.H.H. (2005). Compression of a cylindrical hydrogen sample driven by an intense co-axial heavy ion beam. Laser Part. Beams 23, 137.CrossRefGoogle Scholar