Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-09T01:27:15.504Z Has data issue: false hasContentIssue false

Nuclear pumping of I2 vapor in dense gases

Published online by Cambridge University Press:  09 March 2009

A.A. Mavlyutov
Affiliation:
Moscow Engineering Physics Institute, 31 Kashirskoe Shosse, Moscow 115409, Russia (RF)
A.I. Mis'kevich
Affiliation:
Moscow Engineering Physics Institute, 31 Kashirskoe Shosse, Moscow 115409, Russia (RF)
B.S. Salamakha
Affiliation:
Moscow Engineering Physics Institute, 31 Kashirskoe Shosse, Moscow 115409, Russia (RF)

Abstract

The luminescence spectra of dense inert gas mixtures with iodine vapors excited by α-particles of 238Pu and 239Pu sources were investigated from 200 to 1,000 nm. In luminescence spectra of He-I2, Ar-I2, and Kr-I2 mixtures besides atomic lines corresponding to (np-ns) transitions of inert gas atom (n = 4 and 5 for Ar and Kr, respectively) there exist 288-, 320-, 342-, and 500-nm iodine molecular bands. The 342-nm (D&3II2g - A&3II2u) band has the highest intensity in these spectra and the highest intensity in the Kr-I2mixture. The measured bandwidth of the 342-nm band is equal to 24 A (full width at half maximum). In the Xe-I2 spectrum, the 342-nm band does not exist but the 253-nm Xel* excimer band has the highest intensity in it. The measured bandwidth of the 253-nm band equals 27 Å.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bartels, M. et al. 1989 J. Chem. Phys. 91, 7355.CrossRefGoogle Scholar
Bradford, R.S. et al. 1975 Appl. Phys. Lett. 27, 546.CrossRefGoogle Scholar
Brand, J.C.D. et al. 1982 J. Mol. Spectrosc. 95, 350.CrossRefGoogle Scholar
Ewing, J.J. et al. 1976 Appl. Phys. Lett. 28, 656.CrossRefGoogle Scholar
Hemmati, H. & Collins, G.J. 1980 Chem. Phys. Lett. 75, 488.CrossRefGoogle Scholar
Kamrukov, A.S. et al. 1989 Sov. J. Kvant. Electr. 16, 2415 (in Russian).Google Scholar
Kopai-Gora, A.P. et al. 1986 Sov. J. Prib. Tekh. Eksp.. 5, 171 (in Russian).Google Scholar
Lorents, D.C. & Rhodes, C.K. 1976 Optics Comm. 18, 14.CrossRefGoogle Scholar
Mavlyutov, A.A. et al. 1993 Laser Phys. 3, 103.Google Scholar
McCusker, M. 1979 In Excimer Lasers, Rhodes, C.K., ed. (Springer, Berlin), p. 70.Google Scholar
McDiarmid, R. 1976 J. Chem. Phys. 65, 168.CrossRefGoogle Scholar
Mis'kevich, A.I. 1992 Laser Phys. 1, 445.Google Scholar
Murray, J.R. et al. 1976 Appl. Phys. Lett. 28, 530.CrossRefGoogle Scholar
Perrot, J.P. et al. 1983 J. Mol. Spectrosc. 98, 161.CrossRefGoogle Scholar
Poletaev, E.D. et al. 1992 Sov. Phys. JTP 62, 1.Google Scholar
Shaw, M.J. et al. 1980 Appl. Phys. Lett. 37, 346.CrossRefGoogle Scholar
Tellinguisen, J. 1982 J. Mol. Spectrosc.. 94, 231.CrossRefGoogle Scholar
Zuev, V.S. et al. 1991 Sov. J. Kvant. Elektr. 18, 181.Google Scholar