Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-17T18:03:03.804Z Has data issue: false hasContentIssue false

Nonlinear Thomson backscattering of intense laser pulses by electrons trapped in plasma-vacuum boundary

Published online by Cambridge University Press:  19 June 2009

Jiansheng Liu*
Affiliation:
State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, China
Changquan Xia
Affiliation:
State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, China
Li Liu
Affiliation:
State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, China
Ruxin Li
Affiliation:
State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, China
Zhizhan Xu
Affiliation:
State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, China
*
Address correspondence and reprint requests to: J. Liu, State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, PO Box 800-211, Shanghai, China. E-mail: [email protected]

Abstract

We present the idea of intensified attosecond X-ray generation based on nonlinear Thomson backscattering of an intense laser pulse by electrons trapped in plasma-vacuum boundary. Two frequency up-conversions due to the relativistic Doppler effect and longitudinal γ-spike effect are analyzed, respectively, where γ is the relativistic factor of the plasma surface. Relativistic resonance heating conditions should be used as a criterion for the experimental design to obtain efficient high-order harmonics and energetic electrons' generation at relatively low laser intensities. Shaping the laser field by proposing a detuned second-harmonic can generate a single attosecond pulse without spectral filtering.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Baeva, T., Gordienko, S. & Pukhov, A. (2006). Theory of high-order harmonic generation in relativistic laser interaction with overdense plasma. Phys. Rev. E 74, 046404.CrossRefGoogle ScholarPubMed
Baeva, T., Gorgienko, S. & Pukhov, A. (2007). Relativistic plasma control for single attosecond pulse generation: Theory simulations and structure of the pulse. Laser Part. Beams 25, 339346.CrossRefGoogle Scholar
Bessonov, E.G., Gorbunkov, M.V., Ishkhanov, B.S., Kostryukov, P.V., Maslova, Yu. Ya., Shvedunov, V.I., Tunkin, V.G. & Vinogradov, A.V. (2008). Laser-electron generator for X-ray applications in science and technology. Laser Part. Beams 26, 489495.CrossRefGoogle Scholar
Bulanov, S.V., Esirkepov, T. & Tajima, T. (2003). Light Intensification towards the Schwinger Limit. Phys. Rev. Lett. 91, 085001.CrossRefGoogle ScholarPubMed
Bulanov, S.V., Naumova, N.M. & Pegoraro, F. (1994). Interaction of an ultrashort, relativistically strong laser pulse with an overdense plasma. Phys. Plasmas 1, 745.CrossRefGoogle Scholar
Cao, L.F., Uschmann, I., Zamponi, F., Kaempfer, T., Fuhrmann, A., Foerster, E., Hoell, A., Redmer, R., Toleikis, S., Tschentscher, T. & Glenzer, S.H. (2007). Space-time characterization of laser plasma interaction of laser plasma interactions in the warm dense matter regime. Laser Part. Beams 25, 239244.CrossRefGoogle Scholar
Corkum, P.B. (1993). Plasma perspective on strong field multiphoton ionization. Phys. Rev. Lett. 71, 19941997.CrossRefGoogle ScholarPubMed
Dromey, B., Zepf, M., Gopal, A., Lancaster, K., Wei, M.S., Krushelnick, K., Tatarakis, M., Vakakis, N., Moustaizis, S., Kodama, R., Tampo, M., Stoeckl, C., Clarke, R., Habara, H., Neely, D., Karsch, S. & Norreys, P. (2006). High harmonic generation in the relativistic limit. Nat. Phys. 2, 456459.CrossRefGoogle Scholar
Dromey, B., Kar, S., Bellei, C., Carroll, D.C., Clarke, R.J., Green, J.S., Kneip, S., Markey, K., Nagel, S.R., Simpson, P.T., Willingale, L., McKenna, P., Neely, D., Najmudin, Z., Krushelnick, K., Norreys, P.A. & Zepf, M. (2007). Bright multi-keV harmonic generation from relativistically oscillating plasma surfaces. Phys. Rev. Lett. 99, 085001.CrossRefGoogle ScholarPubMed
Esarey, E., Ride, S.K. & Sprangle, P. (1993). Nonlinear Thomson scattering of intense laser pulses from beams and plasmas. Phys. Rev. E 48, 30033021.CrossRefGoogle ScholarPubMed
Farkas, G. & Toth, C. (1992). Proposal for attosecond light pulse generation using laser induced multiple-harmonic conversion processes in rare gases. Phys. Lett. A 168, 447450.CrossRefGoogle Scholar
Gordienko, S., Pukhov, A., Shorokhov, O. & Baeva, T. (2004). Relativistic Doppler effect: Universal spectra and zeptosecond pulses. Phys. Rev. Lett. 93, 115002.CrossRefGoogle ScholarPubMed
Gordienko, S., Pukhov, A., Shorokhov, O. & Baeva, T. (2005). Coherent focusing of high harmonics: A new way towards the extreme intensities. Phys. Rev. lett. 94, 103903.CrossRefGoogle ScholarPubMed
Gordienko, S. & Pukhov, A. (2005). Scalings for ultrarelativistic laser plasmas and quasimonoenergetic electrons. Phys. Plasmas 12, 043109.CrossRefGoogle Scholar
Hentschel, M., Kienberger, R., Spielmann, Ch., Reider, G.A., Milosevic, N., Brabec, T., Corkum, P., Heinzmann, U., Drescher, M. & Krausz, F. (2001). Attosecond metrology. Nat. 414, 509513.CrossRefGoogle ScholarPubMed
Jackson, J.D. (1975). Classical Electrodynamics, New York: Wiley.Google Scholar
Kulagin, V.V., Cherepenin, V.A., Hur, M.S., Lee, J. & Suk, H. (2008). Evolution of a high-density electron beam in the field of a super-intense laser pulse. Laser Part. Beams 26, 397409.CrossRefGoogle Scholar
Lan, P., Lu, P., Cao, W. & Wang, X. (2005). Attosecond and zeptosecond X-ray pulses via nonlinear Thomson backscattering. Phys. Rev. E 72, 066501.CrossRefGoogle ScholarPubMed
Lau, Y.Y., He, F., Umstadter, D.P. & Kowalczyk, R. (2003). Nonlinear Thomson scattering: A tutorial. Phys. Plasmas 10, 21552162.CrossRefGoogle Scholar
Lewenstein, M., Balcou, Ph., Ivanov, M. Yu., Huillier, A.L. & Corkum, P.B. (1994). Theory of high-harmonic generation by low-frequency laser fields. Phys. Rev. A 49, 21172132.CrossRefGoogle ScholarPubMed
Lichters, R., Meyer-ter-Vehn, J. & Pukhov, A. (1996). Short-pulse laser harmonics from oscillating plasma surfaces driven at relativistic intensity. Phys. Plasmas 3, 34253437.CrossRefGoogle Scholar
Liang, X., Leng, Y., Wang, C., Li, C., Lin, L., Zhao, B., Jiang, Y., Lu, X., Hu, M., Zhang, C., Lu, H., Yin, D., Jiang, Y., Lu, X., Wei, H., Zhu, J., Li, R. & Xu, Z. (2007). Parasitic lasing suppression in high gain femtosecond petawatt Ti:sapphire amplifier. Opt. Express 15, 1533515341.CrossRefGoogle ScholarPubMed
Linde, D.V. & Rzazewski, K. (1996). High-order optical harmonic generation from solid surfaces. Appl. Phys. B 63, 499506.CrossRefGoogle Scholar
Mangles, S.P.D., Murphy, C.D., Najmudin, Z., Thomas, A.G.R., Collier, J.L., Dangor, A.E., Divall, E.J., Foster, P.S., Gallacher, J.G., Hooker, C.J., Jaroszynski, D.A., Langley, A.J., Mori, W.B., Norreys, P.A., Tsung, F.S., Viskup, R., Walton, B.R. & Krushelnick, K. (2004). Monoenergetic beams of relativistic electrons from intense laser–plasma interactions. Nat. 431, 535538.CrossRefGoogle ScholarPubMed
Merdji, H., Auguste, T., Boutu, W., Caumes, J.P., Carré, B., Pfeifer, T., Jullien, A., Neumark, D.M. & Leone, S.R. (2007). Isolated attosecond pulses using a detuned second-harmonic field. Opt. Lett. 32, 31343136.CrossRefGoogle ScholarPubMed
Mourou, G. & Umstadter, D. (2002). Extreme light. Sci. Am. 286, 8082.CrossRefGoogle ScholarPubMed
Naumova, N.M., Nees, J.A., Sokolov, I.V., Hou, B. & Mourou, G.A. (2004). Relativistic generation of isolated attosecond pulses in a λ3 focal volume. Phys. Rev. Lett. 92, 063902.CrossRefGoogle Scholar
Paul, P.M., Toma, E.S., Breger, P., Mullot, G., Augé, F., Balcou, Ph., Muller, H.G. & Agostini, P. (2001). Observation of a train of attosecond pulses from high harmonic generation. Scie. 292, 16891692.Google ScholarPubMed
Plaja, L., Roso, L., Rzazewski, K. & Lewenstein, M. (1998). Generation of attosecond pulse trains during the reflection of a very intense laser on a solid surface. J. Opt. Soc. Am. B 7, 19041911.CrossRefGoogle Scholar
Pukhov, A., Gordienko, S. & Baeva, T. (2003). Temporal structure of attosecond pulses from intense laser-atom interactions. Phys. Rev. Lett. 91, 173002.CrossRefGoogle ScholarPubMed
Quéré, F., Thaury, C., Monot, P., Dobosz, S. & Martin, Ph. (2006). Coherent wake emission of high-order harmonics from overdense plasmas. Phys. Rev. Lett. 91, 125004.CrossRefGoogle Scholar
Riley, D., Khattak, F.Y., Saiz, E.G., Gregori, G., Bandyopadhyay, S., Notley, M., Neely, D., Chambers, D., Moore, A. & Comley, A. (2007). Spectrally resolved X-ray scatter from laser-shock-driven plasmas. Laser Part. Beams 25, 465469.CrossRefGoogle Scholar
Sansone, G., Benedetti, E., Calegari, F., Vozzi, C., Avaldi, L., Flammini, R., Poletto, L., Villoresi, P., Altucci, C., Velotta, R., Stagira, S., De Silvestri, S. & Nisoli, M. (2006). Isolated single-cycle attosecond pulses. Scie. 314, 443446.Google ScholarPubMed
Sola, I.J., Mével, E., Elouga, L., Constant, E., Strelkov, V., Poletto, L., Villoresi, P., Benedetti, E., Caumes, J.-P., Stagira, S., Vozzi, C., Sansone, G. & Nisoli, M. (2006). Controlling attosecond electron dynamics by phase-stabilized polarization gating. Nat. Phys. 2, 319322.CrossRefGoogle Scholar
Strickland, D. & Mourou, G. (1985). Compression of amplified chirped optical pulses. Opt. Commun. 56, 219221.CrossRefGoogle Scholar
Thaury, C., Quéré, F., Geindre, J.-P., Levy, A., Ceccotti, T., Monot, P., Bougeard, M., Réau, F., d'Oliveira, P., Audebert, P., Marjoribanks, R. & Martin, Ph. (2007). Plasma mirrors for ultrahigh-intensity optics. Nat. Phys. 3, 424429.CrossRefGoogle Scholar
Tsakiris, G.D., Eidmann, K., Meyer-ter-Vehn, J. & Krausz, F. (2006). Route to intense single attosecond pulses. New J. Phys. 8, 19.CrossRefGoogle Scholar
Varró, S. (2007). Linear and nonlinear absolute phase effects in interactions of ultrashort laser pulses with a metal nano-layer or with a thin plasma layer. Laser Part. Beams 25, 379390.CrossRefGoogle Scholar