Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-09T02:14:09.207Z Has data issue: false hasContentIssue false

A new maser effect in plasma turbulence

Published online by Cambridge University Press:  09 March 2009

M. Nambu
Affiliation:
College of General Education, Kyushu University, Ropponmatsu, Fukuoka 810, Japan

Abstract

The present state of understanding of a new maser effect is reviewed. The new maser effect, the idea that the resonant electrons in a turbulent plasma can radiate amplified electromagnetic radiation, does not require population inversion of electrons. The new maser effect always coexists with Landau (or cyclotron) damping; thus it is a fundamental effect in plasma turbulence. In nuclear fusion, magnetic confinement will be at a disadvantage due to the enhanced radiation losses in the long wave length region, while inertial confinement will be improved by the laser effect in the X-ray region

Type
Research Article
Copyright
Copyright © Cambridge University Press 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akama, H. & Nambu, M. 1982 Physica 116A, 155.CrossRefGoogle Scholar
Amagishi, Y. 1970. J. Phys. Soc. Japan 29, 764.CrossRefGoogle Scholar
Bekefi, G., Hirschfield, J. L. & Brown, S. C. 1961 Phys. Fluids 4, 173.CrossRefGoogle Scholar
Bekefi, G. 1966 Radiation Processes in Plasma (Wiley, New York).Google Scholar
Ben-Aryeh, , Felsteiner, J., Politch, J. & Resenberg, A. 1983 in Laser Interaction and Related Plasma Phenom., Hora, H. ed. (Plenum, New York) Vol. 6A.Google Scholar
Bujarbarua, S., Sarma, S. N. & Nambu, M. 1983 Phys. Rev. A. in press.Google Scholar
Bujarbarua, S., Sarma, S. N., Nambu, M. & Fujiyama, H. 1983 Phys. Rev. A. (Submitted).Google Scholar
Chen, F. 1974 Introduction to Plasma Physics (Plenum, New York).Google Scholar
Cornilleau-Wehrlin, N. 1981. J. Geophys. Res. 86, 1365.CrossRefGoogle Scholar
Davidson, R. C. 1972 Methods in Nonlinear Plasma Theory (Academic Press, New York).Google Scholar
Dawson, J. M. & Oberman, C. 1963 Phys. Fluids 6, 394.CrossRefGoogle Scholar
Dawson, J. M. 1968 Advances in Plasma Physics (Interscience, New York) vol. 1.Google Scholar
Dubois, D. F. & Goldman, M. V. 1966. Phys. Rev. Lett. 14, 544.CrossRefGoogle Scholar
Dubois, D. F. & Pesme, D. 1983 Phys. Fluids (submitted).Google Scholar
Dupree, T. H. 1966 Phys. Fluids 9, 1773.CrossRefGoogle Scholar
Finken, K. H. & Ackermann, U. 1982 Physica 113B, 135.Google Scholar
Fried, B. D. & Wong, A. Y. 1966 Phys. Fluids 9, 1084.CrossRefGoogle Scholar
Fujiyama, H. & Nambu, M. 1983 Paper submitted to XVI International Conference on Phenomena in Ionized Gases(Düsseldorf).Google Scholar
Ginzburg, V. L. & Zheleznyakov, V. V. 1959 Sov. Astron. 3, 236.Google Scholar
Gurnett, D. A. 1974 J. Geophys. Res. 79, 4227.CrossRefGoogle Scholar
Gurnett, D. A., Marsch, E., Phiupp, W., Schwenn, R. & Rosenbauer, H. 1979 J. Geophys. Res. 84, 2029.CrossRefGoogle Scholar
Hirose, A. 1983 Comments on Plasma Phys. Controlled Fusion (in press).Google Scholar
Hora, H. 1969 Phys. Fluids 12, 182.CrossRefGoogle Scholar
Hora, H. 1981 Physics of Laser Driven Plasmas (Wiley, New York).Google Scholar
Hora, H. 1983 Laser and Particle Beams (in press).Google Scholar
Kadomtsev, B. B. 1965 Plasma Turbulence (Academic, New York).Google Scholar
Kentwell, G. W. & Hora, H. 1980 Plasma Phys. 22, 1051.CrossRefGoogle Scholar
Kotani, M. 1948. J. Phys. Soc. Japan 3, 86.CrossRefGoogle Scholar
Lalousis, P. and Hora, H. 1983 Laser and Particle Beams (in press).Google Scholar
Landau, L. D. 1946 J. Phys. (USSR) 10, 25.Google Scholar
Lawson, J. D. 1957 Proc. Phys. Soc. London B70, 6.CrossRefGoogle Scholar
Lin, R. P., Potter, D. W., Gurnett, D. A., and Scarf, F. L. 1981 Ap. J 251, 364.CrossRefGoogle Scholar
Mazzucato, E. 1976 Phys. Rev. Lett. 36, 792.CrossRefGoogle Scholar
Nambu, M. & Shukla, P. K. 1979 Phys. Rev. A20, 2498.CrossRefGoogle Scholar
Nambu, M. 1980 J. Phys. Soc. Japan 49, 2349.CrossRefGoogle Scholar
Nambu, M. 1981 Phys. Rev. A23, 3272. Erratum 1983 2349.CrossRefGoogle Scholar
Nambu, M. & Terasawa, T. 1982. J. Phys. Soc. Japan 51, 2385.CrossRefGoogle Scholar
Nambu, M. 1982 Phys. Fluids 25, 1196.CrossRefGoogle Scholar
Nambu, M. & Akama, H. 1983 to be published.Google Scholar
Nambu, M. & Shukla, P. K. 1983 Ap J 271, L35.CrossRefGoogle Scholar
Nambu, M., Bujarbarua, S. & Sarma, S. N. 1983 Phys Fluids (submitted).Google Scholar
Nishikawa, K. 1968 J. Phys. Soc. Japan 24, 916.CrossRefGoogle Scholar
Offenberger, A. A., Fedosejevs, R., Tighe, W. & Rozmus, W. 1982 Physica Scripta T2/2, 498.CrossRefGoogle Scholar
Phillips, R. M. 1960 IRE Transactions on Electron Devices, p. 231.Google Scholar
Reinleitner, L. A., Gurnett, D. A. & Gallagher, D. L. 1982 Nature 295, 46.CrossRefGoogle Scholar
Sagdeev, R. Z. 1979 Rev. Mod. Phys. 51, 1.CrossRefGoogle Scholar
Silin, V. P. 1965 Sov. Phys. JETP 21, 1127.Google Scholar
Temerin, M., Gerny, K., Lotko, W. & Mozer, F. S. 1982 Phys. Rev. Lett. 48, 1175.CrossRefGoogle Scholar
Tomonaga, S. 1948 J. Phys. Soc. Japan 3, 56.CrossRefGoogle Scholar
Townes, C. H. 1964 Nobel Lectures (Elsevier Publishing Company).Google Scholar
Tsytovich, V. N., Stenflo, L. & Wilhelmsson, H. 1981. Ap. J. 246, L89.CrossRefGoogle Scholar
Tsytovich, V. N., Stenflo, L. & Wilhelmsson, , 1975 Phys. Scripta 11, 251.CrossRefGoogle Scholar
Twiss, R. Q. 1958 Aust. J. Phys. 11, 564.CrossRefGoogle Scholar
Vlahos, L. & Papadopoulos, K. 1979 Ap. J. 234, L217.CrossRefGoogle Scholar
Vlahos, L. & Papadopoulos, K. 1982 Ap J. 252, L75.CrossRefGoogle Scholar