Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-29T17:58:57.718Z Has data issue: false hasContentIssue false

Multiple-pass amplifiers for high-power laser systems

Published online by Cambridge University Press:  09 March 2009

S. Jackel
Affiliation:
Division of Plasma Physics, SOREQ Nuclear Research Center, 70600 Yavne, Israel
M. Givon
Affiliation:
Division of Plasma Physics, SOREQ Nuclear Research Center, 70600 Yavne, Israel
A. Ludmirsky
Affiliation:
Division of Plasma Physics, SOREQ Nuclear Research Center, 70600 Yavne, Israel
S. Eliezer
Affiliation:
Division of Plasma Physics, SOREQ Nuclear Research Center, 70600 Yavne, Israel
J. L. Borowitz
Affiliation:
Division of Plasma Physics, SOREQ Nuclear Research Center, 70600 Yavne, Israel
B. Arad
Affiliation:
Division of Plasma Physics, SOREQ Nuclear Research Center, 70600 Yavne, Israel
A. Zigler
Affiliation:
Division of Plasma Physics, SOREQ Nuclear Research Center, 70600 Yavne, Israel
Y. Gazit
Affiliation:
Division of Plasma Physics, SOREQ Nuclear Research Center, 70600 Yavne, Israel

Abstract

Multiple-pass amplifiers were configured from Nd:glass rods using polarization and angular coupling techniques. Very high gain (>600) single beam triple-pass booster stages and high gain (30 or 15) single or double-beam double-pass amplifiers were combined to construct a very cost effective high-power (50 GW) pulsed laser system. These techniques were also effectively applied to smaller compact high repetition-rate systems.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abates, J., Lund, L., Brown, D., Jacobs, S., Refermat, S., Kelly, J., Gavin, M., Waldbilung, J. & Lewis, O. 1981 Appl. Opt. 20, 351.CrossRefGoogle Scholar
Allen, N., Craddock, D., Day, R., Forster, M., Gleed, D., Gottfeldt, P., Lester, W.Raven, A., Reason, C., Rumsby, P., Sunderland, S., Wellstood, W. & Wyatt, R. 1983 In Rutherford Appleton Laboratories Report RL-83–043, 1.3.Google Scholar
Armington, A. & Larkin, J. 1984 Aerospace America, 84.Google Scholar
Brown, D. 1981 High-Peak-Power Nd: Glass Laser Systems (Springer-Verlag, New York).CrossRefGoogle Scholar
Brueckner, K., Jorna, S. & Moncur, K. 1974 Appl. Opt. 13, 2183.CrossRefGoogle Scholar
Hunt, J. 1982 In LLNL 1982 Annual Report UCRL-50021–82, 6–1.Google Scholar
Jackel, S., Laluz, R., Paiss, Y., Szichman, H., Arad, B., Eliezer, S., Gazit, Y., Loebenstein, M. & Zigler, A. 1982 J. Phys. E.; Sci. Instrum. 15, 255.CrossRefGoogle Scholar
Jackel, S., Loebenstein, H. M., Zigler, A., Zmora, H. & Zweigenbaum, S. 1980 J. Phys. E: Sci. Instrum. 13, 995.CrossRefGoogle Scholar
Joshi, C. & Corkum, P. 1981 Opt. Commun. 36, 82.CrossRefGoogle Scholar
Kinloch, , 1978 Opt. Spectra, 46.Google Scholar
KMSF-U-525 1976 Monthly Progress Report, 13, 250.Google Scholar
Koechner, W. 1976 Solid-State Laser Engineering (Springer-Verlag, New York).CrossRefGoogle Scholar
Manes, K. 1982 In LLNL 1982 Annual Report UCRL 50021–82, 2–53.Google Scholar
McMahon, J. 1978 NRL Report 3848.Google Scholar
Murray, J., Downs, D., Hunt, J., Hermes, G. & Warren, W. 1981 Appl. Opt. 20, 826.CrossRefGoogle Scholar
Ross, I. 1981 In Rutherford Appleton Laboratories Report RL-81–040, 1.03.Google Scholar
Roux, R. 1985 Laser Focus, 21, 22.Google Scholar
Simmons, W., Speck, D. & Hunt, J. 1978 Appl. Opt. 17, 999.CrossRefGoogle Scholar
Soures, J., Kumpan, S. & Hoose, J. 1974 Appl. Opt. 13, 2081.CrossRefGoogle Scholar
Swain, J. & Rainer, F. 1969 IEEE J. Quantum Electron. AE-5, 385.CrossRefGoogle Scholar
Williams, P. 1978 in Rutherford Laboratory Report LD/78/04, 1/25.Google Scholar