Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-26T19:02:33.876Z Has data issue: false hasContentIssue false

Modified wire array underwater electrical explosion

Published online by Cambridge University Press:  13 March 2012

L. Gilburd
Affiliation:
Physics Department, Technion, Haifa, Israel
S. Efimov
Affiliation:
Physics Department, Technion, Haifa, Israel
A. Fedotov Gefen
Affiliation:
Physics Department, Technion, Haifa, Israel
V. Tz. Gurovich
Affiliation:
Physics Department, Technion, Haifa, Israel
G. Bazalitski
Affiliation:
Physics Department, Technion, Haifa, Israel
O. Antonov
Affiliation:
Physics Department, Technion, Haifa, Israel
Ya. E. Krasik*
Affiliation:
Physics Department, Technion, Haifa, Israel
*
Address correspondence and reprint requests to: Yakov E. Krasik, Physics Department, Technion 32000 Haifa, Israel. E-mail: [email protected]

Abstract

The results of experiments involving underwater electrical explosion of different wire arrays using an outer metallic cylinder as a shock reflector are presented. A pulse generator with a stored energy of about 6 kJ, current amplitude ≤ 500 kA, and rise time of 350 ns was used for the wire array explosion. The results of the experiments and of hydrodynamic simulations showed that in the case of a Cu wire array explosion, the addition of the reflector increases the pressure and temperature of the water in the vicinity of the implosion axis about 1.38 and about 1.33 times, respectively. Also, it was shown that in the case of an Al wire array explosion with stainless steel reflector, Al combustion results, and, accordingly, additional energy is delivered to the converging water flow generating about 540 GPa pressure in the vicinity of the explosion axis. Finally, it was found that microsecond time scale light emission that appears with microsecond time scale delay with respect to the nanosecond time scale self-light emission of the compressed water in the vicinity of the implosion axis is related to water bubbles formation which scattered light of exploded wires.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bazalitski, G., Gurovich, V.Tz., Fedotov-Gefen, A., Efimov, S. & Krasik, Ya.E. (2011). Simulation of converging cylindrical GPa-range shock waves generated by wire array underwater electrical explosions. Shock Waves 21, 321329.CrossRefGoogle Scholar
Celliers, P.M., Collins, G.W., Hicks, D.G., Koenig, M., Henry, E., Benuzzi-Mounaix, A., Batani, D., Bradely, D.K., Da Silva, L.B., Wallace, R.J., Moon, S.J., Eggert, J.H., Lee, K.K.M., Benedetti, L.R., Jeanloz, R., Masclet, I., Dague, N., Marchet, B., Rabec, LeGloahec, M., Reverdin, Ch., Pasley, J., Willi, O., Neely, D. & Danson, C. (2004). Electronic conduction in shock-compressed water. Phys. Plasmas 11, L41L44.CrossRefGoogle Scholar
Efimov, S., Gurovich, V.Tz., Bazalitski, G., Fedotov, A. & Krasik, Ya.E. (2009). Addressing the efficiency of the energy transfer to the water flow by underwater electrical wire explosion. J. Appl. Phys. 106, 073308/1–8.CrossRefGoogle Scholar
Fedotov, A., Grinenko, A., Efimov, S. & Krasik, Ya.E. (2007). Generation of cylindrically symmetric converging shock waves by underwater electrical explosion of wire array. Appl. Phys. Lett. 90, 201502/1–3.CrossRefGoogle Scholar
Fedotov-Gefen, A., Efimov, S., Gilburg, L., Bazalitski, G., Gurovich, V.Tz. & Krasik, Ya.E. (2011). Generation of a 400GPa pressure in water using converging strong shock waves. Phys. Plasmas. 18, 062701/1–8.CrossRefGoogle Scholar
Fedotov-Gefen, A., Efimov, S., Gilburg, L., Gleizer, S., Bazalitsky, G., Gurovich, V.Tz. & Krasik, Ya.E. (2010). Extreme water state produced by underwater wire-array electrical explosion. Appl. Phys. Lett. 96, 221502/1–3.CrossRefGoogle Scholar
Goldman, N., Reed, E.J., Kuo, I.F., Fried, L.E., Mundy, C.J. & Curioni, A. (2009). Ab initio simulation of the equation of state and kinetics of shocked water. J. Chem. Phys. 130, 124517/1–6.CrossRefGoogle ScholarPubMed
Grinenko, A., Efimov, S., Fedotov, A., Krasik, Ya.E. & Shnitzer, I. (2006). Efficiency of the shock wave generation caused by underwater electrical wire explosion. J. Appl. Phys. 100, 113509/1–8.CrossRefGoogle Scholar
Grinenko, A., Gurovich, V.T. & Krasik, Ya.E. (2007). Implosion in water medium and its possible application for the inertial confinement fusion. Phys.Plasmas. 14, 012701/1–7.CrossRefGoogle Scholar
Grinenko, A., Krasik, Ya.E., Efimov, S., Fedotov, A., Gurovich, V.Tz. & Oreshkin, V.I. (2006). Nanosecond time scale, high power electrical wire explosion in water. Phys. Plasmas 13, 042701/1–14.CrossRefGoogle Scholar
Kalitkin, N.N. (1978). Numerical Methods. Moscow: Nauka.Google Scholar
Kolacek, K., Prukner, V., Schmidt, J., Frolov, O. & Straus, J. (2010). A potential environment for lasing below 15 nm initiated by exploding wire in water. Laser Part. Beams 28, 6167.CrossRefGoogle Scholar
Kortchondziya, V.P., Mdivnishvili, V.P. & Taktakishvili, M.I. (1999). About generation of pulsed pressure in liquid by the use of metallic plasma and measurements of some of characteristics of the pressure. J. Techn. Phys. 69, 4143.Google Scholar
Kovalchuk, B.M., Kharlov, A.V., Zorin, V.B. & Zherlitsyn, A.A. (2009). A compact submicrosecond, high current generator. Rev. Sci. Instr. 80, 083504/1–6.CrossRefGoogle ScholarPubMed
Krasik, Ya.E., Grinenko, A., Sayapin, A. & Gurovich, V.Tz. (2007). Generation of sub-Mbar pressure by converging shock waves produced by the underwater electrical explosion of a wire array. Phys. Rev. E. 73, 057301/1–4.Google Scholar
Lindl, J. (1995). Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain. Phys. Plasmas. 2, 39334024.CrossRefGoogle Scholar
Lyon, S.P. & Johnson, J.D. (1992). SESAME: The Los Alamos National Laboratory, Report No LA-UR-92-3407.Google Scholar
Mitchell, A.C. & Nellis, W.J. (1981). Diagnostic system of the Lawrence Livermore National Laboratory two-stage light-gas gun. Rev. Sci. Instrum. 52, 347360.CrossRefGoogle Scholar
Nellis, W.J., Holmes, N.C., Mitchell, A.C., Hamilton, D.C. & Nicol, M. (1997). Equation of state and electrical conductivity of “synthetic Uranus,” a mixture of water, ammonia, and isopropanol, at shock pressure up to 200GPa (2Mbar). J. Chem. Phys. 107, 90969100.CrossRefGoogle Scholar
Sasaki, T., Yano, Y., Nakajima, M., Kawamura, T. & Horioka, K. (2006). Warm-dense-matter studies using pulse-powered wire discharges in water. Laser Part. Beams 24, 371380.CrossRefGoogle Scholar
Spielman, R.B., Deeney, C., Chandler, G.A., Douglas, M.R., Fehl, D.L., Matzen, M.K., McDaniel, D.H., Nash, T.J., Porter, J.L., Sanford, T.W.L., Seamen, J.F., Stygar, W.A., Struve, K.W., Breeze, S.P., McGurn, J.S., Torres, J.A., Zagar, D.M., Gilliland, T.L., Jobe, D.O., McKenney, J.L., Mock, R.C., Vargas, M., Wagone, T. & Peterson, D.L. (1998). Tungsten wire-array Z-pinch experiments at 200 TW and 2 MJ. Phys. Plasmas 5, 21052111.CrossRefGoogle Scholar
Tahir, N.A., Stöhlker, Th., Shutov, A., Lomonosov, I.V., Fortov, V.E., French, M., Nettelmann, N., Redmer, R., Piriz, A.R., Deutch, C., Zhao, Y., Xu, H., Xiao, G. & Zhan, W. (2010). Ultrahigh compression of water using intense heavy ion beams: Laboratory planetary physics. New J. Phys. 12, 073022/1–17.CrossRefGoogle Scholar
Veksler, D., Sayapin, A., Efimov, S. & Krasik, Ya.E. (2009). Characterization of Different Wire Configurations in Underwater Electrical Explosion. IEEE Trans. Plasma Sci. 37, 8898.CrossRefGoogle Scholar