Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-23T05:09:09.173Z Has data issue: false hasContentIssue false

Low-energy nuclear transitions in subrelativistic laser-generated plasmas

Published online by Cambridge University Press:  16 June 2008

O. Renner*
Affiliation:
Institute of Physics of the Academy of Sciences of the Czech Republic, v.v.i., Prague, Czech Republic
L. Juha
Affiliation:
Institute of Physics of the Academy of Sciences of the Czech Republic, v.v.i., Prague, Czech Republic
J. Krasa
Affiliation:
Institute of Physics of the Academy of Sciences of the Czech Republic, v.v.i., Prague, Czech Republic
E. Krousky
Affiliation:
Institute of Physics of the Academy of Sciences of the Czech Republic, v.v.i., Prague, Czech Republic
M. Pfeifer
Affiliation:
Institute of Physics of the Academy of Sciences of the Czech Republic, v.v.i., Prague, Czech Republic
A. Velyhan
Affiliation:
Institute of Physics of the Academy of Sciences of the Czech Republic, v.v.i., Prague, Czech Republic
C. Granja
Affiliation:
Institute of Experimental and Applied Physics, Czech Technical University, Prague, Czech Republic
J. Jakubek
Affiliation:
Institute of Experimental and Applied Physics, Czech Technical University, Prague, Czech Republic
V. Linhart
Affiliation:
Institute of Experimental and Applied Physics, Czech Technical University, Prague, Czech Republic
T. Slavicek
Affiliation:
Institute of Experimental and Applied Physics, Czech Technical University, Prague, Czech Republic
Z. Vykydal
Affiliation:
Institute of Experimental and Applied Physics, Czech Technical University, Prague, Czech Republic
S. Pospisil
Affiliation:
Institute of Experimental and Applied Physics, Czech Technical University, Prague, Czech Republic
J. Kravarik
Affiliation:
Faculty of Electrical Engineering, Czech Technical University, Prague, Czech Republic
J. Ullschmied
Affiliation:
Institute of Plasma Physics of the Academy of Sciences of the Czech Republic, v.v.i., Prague, Czech Republic
A.A. Andreev
Affiliation:
Institute of Laser Physics, St. Petersburg, Russia
T. Kämpfer
Affiliation:
Institut für Optik und Quantenelektronik, Friedrich-Schiller-Universität, Jena, Germany
I. Uschmann
Affiliation:
Institut für Optik und Quantenelektronik, Friedrich-Schiller-Universität, Jena, Germany
E. Förster
Affiliation:
Institut für Optik und Quantenelektronik, Friedrich-Schiller-Universität, Jena, Germany
*
Address correspondence and reprint requests to: Oldrich Renner, Institute of Physics of the Academy of Sciences of the Czech Republic, v.v.i., Na Slovance 2, 182 21 Prague 8, Czech Republic. E-mail: [email protected]

Abstract

The aim of the reported research is to contribute to investigation of new processes and methods interlinking nuclear and laser-plasma physics. With respect to requirements of nuclear experiments at medium-size high-power lasers, the selection of proper candidates for studying the excitation and decay of low-lying nuclear states is reviewed. An experimental approach to the identification of low-energy nuclear transitions is discussed, simple estimates of the 181Ta excitation yield in the laser-generated plasma provide a theoretical basis for planning future work. First tests and results of the experiments at the laser facility PALS are presented.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Andreev, A.V., Volkov, R.V., Gordienko, V.M., Dykhne, A.M., Kalashnikov, M.P., Mikheev, P.M., Nikles, P.V., Savel'ev, A.B., Tkalya, E.V., Chalykh, R.A. & Chutko, O.V. (2000). Excitation and decay of low-lying nuclear states in a dense plasma produced by a subpicosecond laser pulse. J. Exp. Theor. Phys. 91, 11631175.CrossRefGoogle Scholar
Andreev, A.A., Van'kov, A.K., Platonov, K.Yu., Rozhdestvenskii, Yu.V., Chizhov, S.P. & Yashinal, V.E. (2002). Determination of the radiation cross sections of low-energy transitions of isomeric nuclei from observation of laser-induced γ-fluorescence. J. Exp. Theor. Phys. 94, 862868.CrossRefGoogle Scholar
Beliaev, V.S. & Arefyev, V.I. (1999). Stimulated atomic and nuclear processes in short laser pulse interaction. Laser Part. Beams 17, 361364.CrossRefGoogle Scholar
Bohr, A. & Mottelson, B.R. (1969 and 1975). Nuclear Structure, Vol. I and II. New York: W.A. Benjamin Inc.Google Scholar
Carroll, J.J. (2004). An experimental perspective on triggering gamma emission from nuclear isomers. Laser Phys. Lett. 1, 275281.CrossRefGoogle Scholar
Chumakov, A.I., Baron, A.Q.R., Arthur, J., Ruby, S.L., Brown, G.S., Smirnov, G.V., van Bürck, U. & Wortmann, G. (1995). Nuclear scattering of synchrotron radiation by 181Ta. Phys. Rev. Lett. 75, 549552.CrossRefGoogle ScholarPubMed
Chung, H.K., Chen, M.H., Morgan, W.L., Ralchenko, Y. & Lee, R.W. (2005). FLYCHK: Generalized population kinetics and spectral model for rapid spectroscopic analysis for all elements. High Ener. Density Phys. 1, 312.CrossRefGoogle Scholar
Cowan, T.E., Perry, M.D., Key, M.H., Ditmire, T.R., Hatchett, S.P., Henry, E.A., Moody, J.D., Moran, M.J., Pennington, D.M., Phillips, T.W., Sangster, T.C., Sefcik, J.A., Singh, M.S., Snavely, R.A., Stoyer, M.A., Wilks, S.C., Young, P.E., Takahashi, Y., Dong, B., Fountain, W., Parnell, T., Johnson, J., Hunt, A.W. & Kuhl, T. (1999). High energy electrons, nuclear phenomena and heating in petawatt laser-solid experiments. Laser Part. Beams 17, 773783.CrossRefGoogle Scholar
Danson, C. N., Brummitt, P.A., Clarke, R.J., Collier, I., Fell, B., Frackiewicz, A.J., Hawkes, S., Hernandez-Gomez, C., Holligan, P., Hutchinson, M.H.R., Kidd, A., Lester, W.J., Musgrave, I.O., Neely, D., Neville, D.R., Norreys, P.A., Pepler, D.A., Reason, C., Shaikh, W., Winstone, T.B., Wyatt, R.W.W. & Wyborn, B.E. (2005). Vulcan petawatt: Design, operation and interactions at 5 × 1020 Wcm−2. Laser Part. Beams 23, 8793.CrossRefGoogle Scholar
Ewald, F., Schwoerer, H., Düsterer, S., Sauerbrey, R., Magill, J., Galy, J., Schenkel, R., Karsch, S., Habs, D. & Witte, K. (2003). Application of relativistic laser plasmas for the study of nuclear reactions. Plasma Phys. Contr. Fusion 45, A83A91.CrossRefGoogle Scholar
Fedosejefs, R., Gobet, F., Dorchies, F., Fourment, C., Hannachi, F., Aléonard, M.M., Claverie, G., Gerbaux, M., Malka, G., Scheurer, J.N., Tarisien, M., Meot, V., Morel, P., Liesfeld, B., Robson, L., Blasco, F., Descamps, D., Schurtz, G., Nicolai, Ph. & Tikhonchuk, V. (2005). Heating of tantalum plasma for studies on activation of 6.238 keV nuclear level of Ta. Proc. 32nd EPS Conference on Plasma Phys. Tarragona, ECA. 29C, P–1.152.Google Scholar
Gobet, F., Aléonard, M.M., Hannachi, F., Claverie, G., Gerbaux, M., Malka, G., Scheurer, J.N., Tarisien, M., Blasco, F., Dorchies, F., Fedosejevs, R., Fourment, C., Santos, J.J., Méot, V., Morel, P., Liesfeld, B., Robson, L., Hanvey, S. & Descamps, D. (2006). Search for the 6 keV isomer excitation and decay in a 181Ta plasma produced with a high repetition rate laser. Proc. 7th AFOSR Workshop on Isomers and Quantum Nucleonics, Dubna., 162170.Google Scholar
Granja, C., Kuba, J., Haiduk, A. & Renner, O. (2007). Survey of nuclei for low-energy nuclear excitation in laser-produced plasma. Nucl. Phys. A 784, 112.CrossRefGoogle Scholar
Harston, M.R. & Chemin, J.F. (1999). Mechanisms of nuclear excitation in plasmas. Phys. Rev. C59, 24622473.Google Scholar
Irwin, G.M. & Kim, K.H. (1997). Observation of electromagnetic radiation from deexcitation of the 229Th isomer. Phys. Rev. Lett. 79, 990993.CrossRefGoogle Scholar
Izawa, Y. & Yamanaka, C. (1979). Production of 235 mU by nuclear excitation by electron transition in a laser produced uranium plasma. Phys. Lett. B 88, 5961.CrossRefGoogle Scholar
Jungwirth, K., Cejnarova, A., Juha, L., Kralikova, B., Krasa, J., Krousky, E., Krupickova, P., Laska, L., Masek, K., Mocek, T., Pfeifer, M., Präg, A., Renner, O., Rohlena, K., Rus, B., Skala, J., Straka, P. & Ullschmied, J. (2001). The Prague Asterix Laser System PALS. Phys. Plasmas 8, 24952501.CrossRefGoogle Scholar
Jungwirth, K. (2005). Recent highlights of the PALS research program. Laser Part. Beams 23, 177182.CrossRefGoogle Scholar
Kalachnikov, M.P., Nickles, P.V., Schönnagel, H. & Sandner, W. (2001). On the way to 100 TW – 10 Hz titanium-sapphire laser facilities. Nucl. Instr. Meth. Phys. Res. A 472, 254259.CrossRefGoogle Scholar
Karamian, S.A. & Carroll, J.J. (2002). Possibility of combining nuclear level pumping in a plasma with lasing in a solid. Hyperfine Interactions 143, 6978.CrossRefGoogle Scholar
Karmakar, A. & Pukhov, A. (2007). Collimated attosecond GeV electron bunches from ionization of high-Z material by radialy polarized ultra-relativistic laser pulses. Laser Part. Beams 25, 371377.CrossRefGoogle Scholar
Ledingham, K.W.D. & Norreys, P.A. (1999). Nuclear physics merely using a light source. Contemp. Phys. 40, 367383.CrossRefGoogle Scholar
Ledingham, K.W.D., McKenna, P. & Singhal, R.P. (2003). Applications for nuclear phenomena generated by ultra-intense laser. Science 300, 11071111.CrossRefGoogle Scholar
Letokhov, V.S. & Yukov, E.A. (1994). Excitation of isomeric low-lying levels of heavy nuclei in laser-produced plasmas. Laser Phys. 4, 382386.Google Scholar
Lide, D.R. (2003). Handbook of Chemistry and Physics, 84th Ed. (Lide, D.R., Ed.). Boca Raton: CRC Press.Google Scholar
Lifschitz, A.F., Faure, J., Glinec, Y., Malka, V. & Mora, P. (2006). Proposed scheme for compact GeV laser plasma accelerator. Laser Part. Beams 24, 255259.CrossRefGoogle Scholar
Limpouch, J., Andreev, A.A. & Semakhin, A.N. (1993). Conversion of ultrashort laser pulses into x-ray emission in high-density laser plasma. Proc. SPIE 1980, 7586.CrossRefGoogle Scholar
Malka, V. & Fritzler, S. (2004). Electron and proton beams produced by ultra short laser pulses in the relativistic regime. Laser Part. Beams 22, 399405.CrossRefGoogle Scholar
Mangles, S.P.D., Walton, B.R., Najmudin, Z., Dangor, A.E., Krushelnick, K., Malka, V., Manclossi, M., Lopes, N., Carias, C., Mendes, G. & Dorchies, F. (2006). Table-top laser-plasma acceleration as an electron radiography source. Laser Part. Beams 24, 185190.CrossRefGoogle Scholar
Matinyan, S. (1998). Lasers as a bridge between atomic and nuclear physics. Phys Rept. 298, 199249.CrossRefGoogle Scholar
McKenna, P., Ledingham, K.W.D., McCanny, T., Singhal, R.P., Spencer, I., Santala, M.I.K., Beg, F.N., Krushelnick, K., Tatarakis, M., Wei, M.S., Clark, E.L., Clarke, R.J., Lancaster, K.L., Norreys, P.A., Spohr, K., Chapman, R. & Zepf, M. (2003). Demonstration of fusion-evaporation and direct-interaction nuclear reactions using high-intensity laser-plasma-accelerated ion beams. Phys. Rev. Lett. 91, 075006.CrossRefGoogle ScholarPubMed
Mouchel, D., Nylandsted Larsen, A. & Hansen, H.H. (1981). Half-life of the 6.21 keV level in181Ta. Z. Phys. A 300, 8588.CrossRefGoogle Scholar
Nickles, P.V., Ter-Avetisyan, S., Schnuerer, M., Sokollik, T., Sandner, W., Schreiber, J., Hilscher, D., Jahnke, U., Andreev, A. & Tikhonchuk, V. (2007). Review of ultrafast ion acceleration experiments in laser plasma at Max Born Institute. Laser Part. Beams 25, 347363.CrossRefGoogle Scholar
Olariu, S. & Olariu, A. (1998). Induced emission of γ radiation from isomeric nuclei. Phys. Rev. C58, 333336.Google Scholar
Schwoerer, H. (2006). Lasers and Nuclei. (Schwoerer, H., Magill, J. and Beleites, B., Eds.). Berlin: Springer.CrossRefGoogle Scholar
Sonzogni, A. (2007). Nuclear structure and decay data. http://www.nndc.bnl.gov/nudat2/.Google Scholar
Tkalya, E.V. (2004). Mechanisms for the excitation of atomic nuclei in hot dense plasma. Laser Phys. 14, 360377.Google Scholar
Tuli, J. (2007). Nuclear data sheets. http://www.nndc.bnl.gov/ensdf/.Google Scholar
Vykydal, Z., Jakubek, J. & Pospisil, S. (2006). USB interface for Medipix2 pixel device enabling energy and position detection of heavy charged particles. Nucl. Instr. Meth. A563, 112115.CrossRefGoogle Scholar
Yin, L., Albright, B.J., Hegelich, B.M., & Fernandez, J.C. (2006). GeV laser ion acceleration from ultrathin targets: The laser break-out afterburner. Laser Part. Beams 24, 291298.CrossRefGoogle Scholar
Zeĺdovich, Ya.B. & Raizer, Yu.P. (2002). Physics of Shock Waves and High Temperature Hydrodynamic Phenomena. (Hayes, W.D. and Probstein, R.F., Eds.). Mineola, NY: Dover Publications.Google Scholar