Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-29T11:22:42.405Z Has data issue: false hasContentIssue false

Light ion beam driven inertial confinement fusion: Requirements and achievements

Published online by Cambridge University Press:  09 March 2009

H.J. Bluhm
Affiliation:
Forschungszentrum Karlsruhe, Institut für Neutronenphysik und Reaktortechnik, P.O. Box 3640, D-76021 Karlsruhe, Germany
G. Keßler
Affiliation:
Forschungszentrum Karlsruhe, Institut für Neutronenphysik und Reaktortechnik, P.O. Box 3640, D-76021 Karlsruhe, Germany
R.R. Petersen
Affiliation:
Fusion Technology Institute, University of Wisconsin-Madison, 1500 Engineering Drive, Madison, WI 53706

Abstract

In this paper we compare the requirements for a light ion beam driven inertial confinement fusion (ICF) reactor with the present achievements in pulsed power technology, ion diode performance, beam transport, and target physics. The largest gap exists in beam quality and repetition rate capability of high-power ion diodes. Beam quality can very likely be improved to a level sufficient for driving a single-shot ignition facility, if the potential of two-stage acceleration is used. Present schemes for repetition rate ion diodes allow either too low power densities or create too large beam divergence. On the other hand, repetitively operating pulsed-power generators meeting the requirements for an ICF reactor driver can be built with present technology. Also, a rather mature target concept has been developed for indirect drive with light ion beams.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Badger, B. et al. 1989 KfK Res. Rep. KfK-4710.Google Scholar
Badger, B. et al. 1991 Univ. of Wisconsin Res. Rep. UWFDM880.Google Scholar
Badger, B. et al. 1995 Univ. of Wisconsin Res. Rep. UWFDM-982.Google Scholar
Baumung, K. et al. 1994 J. Appl. Phys. 75, 7633.CrossRefGoogle Scholar
Bluhm, H. et al. 1992 Proc. IEEE 80, 995.CrossRefGoogle Scholar
Johnson, D.L. et al. 1993 In Proc. 9th Int. Pulsed Power Conf. Prestwich, K.R., ed., (Albuquerque, NM), p. 437.Google Scholar
Leeper, R.J. 1995 Paper presented at Int. Workshop on Ion Beam Driven ICF (Osaka, Japan) (unpublished).Google Scholar
Leeper, R.J. et al. 1995 In Proc. 12th Int. Conf. on Laser Interaction and Related Plasma Phenomena Nakai, S. & Miley, G.H., eds., (Osaka, Japan), p. 1042.Google Scholar
Lockner, T.R. et al. 1993 In Proc. 9th Int. Pulsed Power Conf. Prestwich, K.R., ed., (Albuquerque, NM), p. 774.Google Scholar
Miyamoto, S. et al. 1990 In Proc. 8th Int'l Conf. on High Power Particle Beams Breizman, B.N. & Knyazev, B.A., eds., (Novosibirsk) p. 190.Google Scholar
Noonan, W.A. et al. 1995 Rev. Sci. Instr. 66, 3448.CrossRefGoogle Scholar
Olson, C.L. et al. 1994 In Proc. IAEA Techn. Com. Meeting on Drivers for Inertial Confinement Fusion Coutant, J., ed., (Paris), p. 259.Google Scholar
Ottinger, P.F. et al. 1992 J. Appl. Phys. 72, 395.CrossRefGoogle Scholar
Poukey, J.W. et al. 1994 Proc. 10th Int. Conf. on High Power Particle Beams Rix, W. & White, R., eds., (San Diego), p. 394.Google Scholar
Ramirez, J.J. et al. 1992 Proc. of the IEEE 80, 946.CrossRefGoogle Scholar
Slutz, S.A. 1993 Paper presented at the Workshop on High Energy Density in Matter (Hirschegg) (unpublished).Google Scholar
Slutz, S.A. & Desjarlais, M.P. 1990 J. Appl. Phys. 67, 6705.CrossRefGoogle Scholar