Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-24T16:34:22.583Z Has data issue: false hasContentIssue false

Laser-generated plasmas by graphene nanoplatelets embedded into polyethylene

Published online by Cambridge University Press:  28 March 2017

L. Torrisi*
Affiliation:
Dip.to di Scienze Fisiche MIFT, Università di Messina, V.le F.S. D'Alcontres 31, 98166 S. Agata, Messina, Italy
G. Ceccio
Affiliation:
Dip.to di Scienze Fisiche MIFT, Università di Messina, V.le F.S. D'Alcontres 31, 98166 S. Agata, Messina, Italy
N. Restuccia
Affiliation:
Dip.to di Scienze Fisiche MIFT, Università di Messina, V.le F.S. D'Alcontres 31, 98166 S. Agata, Messina, Italy
E. Messina
Affiliation:
IPCF-CNR, V.le F.S. D'Alcontres 37, 98166 Messina, Italy
P. G. Gucciardi
Affiliation:
IPCF-CNR, V.le F.S. D'Alcontres 37, 98166 Messina, Italy
M. Cutroneo
Affiliation:
Nuclear Physics Institute, CAS, 25068 Rez, Czech Republic
*
Address correspondence and reprint requests to: L. Torrisi, Dip.to di Scienze Fisiche MIFT, Università di Messina, V.le F.S. D'Alcontres 31, 98166 S. Agata, Messina, Italy. E-mail: [email protected]

Abstract

Graphene micrometric particles have been embedded into polyethylene at different concentrations by using chemical–physical processes. The synthesized material was characterized in terms of mechanical and optical properties, and Raman spectroscopy. Obtained targets were irradiated by using a Nd:YAG laser at intensities of the order of 1010 W/cm2 to generate non-equilibrium plasma expanding in vacuum. The laser–matter interaction produces charge separation effects with consequent acceleration of protons and carbon ions. Plasma was characterized using time-of-flight measurements of the accelerated ions. Applications of the produced targets in order to generate carbon and proton ion beams from laser-generated plasma are presented and discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Andrews, R. & Weisenberger, M.C. (2008). Carbon nanotube polymer composites. Curr. Opin. Solid State Mater. Science 8, 3137.Google Scholar
Balandin, A.A. (2011). Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 10, 569581.CrossRefGoogle ScholarPubMed
Balandin, A.A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F. & Lau, C.N. (2008). Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902907.CrossRefGoogle ScholarPubMed
Bolotin, K.I., Sikes, K., Jiang, Z., Klima, M., Fudenberg, G., Hone, J., Kim, P. & Stormer, H. (2008). Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146, 351355.Google Scholar
Bonaccorso, F., Sun, Z., Hasan, T. & Ferrari, A.C. (2010). Graphene photonics and optoelectronics. Nat. Photonics 4, 611622.Google Scholar
Chin, S.L., Wang, T.J., Marceau, C., Wu, J., Liu, J.S., Kosareva, O., Panov, N., Chen, Y.P., Daigle, J.F., Yuan, S., Azarm, A., Liu, W.W., Seideman, T., Zeng, H.P., Richardson, M., Li, R. & Xu, Z.Z. (2011). Advances in intense femtosecond laser Filamentation in air. Laser Phys. 22, 153. Pleiades Publishing Ltd.Google Scholar
D'Andrea, M., Irrera, A., Fazio, B., Foti, A., Messina, E., Maragò, O.M., Kessentini, S., Artoni, P., David, C. & Gucciardi, P.G. (2015). Red shifted spectral dependence of the SERS enhancement in a random array of gold nanoparticles covered with a silica shell: Extinction versus scattering. J. Opt. 17, 114016.Google Scholar
Eliezer, S. (2002). The Interaction of High-Power Lasers with Plasmas. Bristol: IOP Publishing.Google Scholar
Ferrari, A.C., Meyer, J.C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., Piscanec, S., Jiang, D., Novoselov, K.S., Roth, S. & Geim, A.K. (2006). Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401.Google Scholar
Gammino, S., Torrisi, L., Ciavola, G., Andò, L., Celona, L., Maciagli, S., Krasa, J., Laska, L., Pfeifer, M., Rohlena, K., Mezzasalma, A.M., Gentile, C., Picciotto, A., Wolowski, J., Woryna, E., Badziak, J., Parys, P., Hitz, D. & Shirkov, G.D. (2004). The electron cyclotron resonance coupled to laser ion source for charge enhancement experiment: Production of high intensity ion beams by means of a hybrid ion source. J. Appl. Phys. 96, 29612968.Google Scholar
Garcia, M.A. (2012). Surface plasmons in metallic nanoparticles: Fundamentals and applications. J. Phys. D: Appl. Phys. 45, 389501.Google Scholar
Haar, S., El Gemayel, M., Shin, Y.Y., Melinte, G., Squillaci, M.A., Ersen, O., Casiraghi, C., Ciesielski, A. & Samori, P. (2005). Enhancing the liquid-phase exfoliation of graphene in organic solvents upon addition of N-octylbenzene. Sci. Rep. 5, 16684.CrossRefGoogle Scholar
Hasan, T., Sun, Z., Wang, F., Bonaccorso, F., Tan, P.H., Rozhin, A.G. & Ferrari, A.C. (2009). Nanotube–polymer composites for ultrafast photonics. Adv. Mater. 21, 38743899.Google Scholar
Kuilla, T., Bhadra, S., Yao, D., Kim, N.H., Bose, S. & Lee, J.H. (2010). Recent advances in graphene based polymer composites. Progr. Polym. Sci. 35, 13501375.Google Scholar
Li, D., Müller, M.B., Gilje, S., Kaner, R.B. & Wallace, G.G. (2008). Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 3, 101105.Google Scholar
Messina, E., Leone, N., Foti, A., Di Marco, G., Riccucci, C., Di Carlo, G., Di Maggio, F., Cassata, A., Gargano, L., D'Andrea, C., Fazio, B., Maragò, O.M., Robba, B., Vasi, C., Ingo, G.M. & Gucciardi, P.G. (2016). Double-wall nanotubes and graphene nanoplatelets for hybrid conductive adhesives with enhanced thermal and electrical conductivity. ACS Appl. Mater. Interfaces 8, 2324423259.CrossRefGoogle ScholarPubMed
Nair, R.R., Blake, P., Grigorenko, A.N., Novoselov, K.S., Booth, T.J., Stauber, T., Peres, N.M. & Geim, A.K. (2008). Fine structure constant defines visual transparency of graphene. Science 320, 1308.CrossRefGoogle ScholarPubMed
Ni, Z.H., Yu, T., Lu, Y.H., Wang, Y.Y., Ping Feng, Y. & Shen, Z.X. (2008). Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening. ACS Nano 2, 23012305.Google Scholar
NIST. (2017). Atomic Spectra Database Ionization Energies Data, actual website 2017: http://physics.nist.gov/cgi-bin/ASD/ie.pl Google Scholar
Noack, J., Hammer, D.X., Noojin, G.D., Rockwell, B.A. & Vogel, A. (1998). Influence of pulse duration on mechanical effects after laser-induced breakdown in water. J. Appl. Phys. 82, 74887495.Google Scholar
Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Katsnelson, M.I., Grigorieva, I.V., Dubonos, S.V. & Firsov, A.A. (2005). Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197200.CrossRefGoogle ScholarPubMed
Potschke, P., Bhattacharyya, A.R. & Janke, A. (2003). Morphology and electrical resistivity of melt mixed blends of polyethylene and carbon nanotube filled polycarbonate. Polymer 44, 80618069.CrossRefGoogle Scholar
Rafiee, M.A., Rafiee, J., Wang, Z., Song, H., Yu, Z.Z. & Koratkar, N. (2009). Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano 3, 38843890.Google Scholar
Sang, X.M., Yang, X.J., Cui, Z.D., Zhu, S.L. & Sheng, J. (2005). Nano-SiO2 doped polystyrene materials for inertial confinement fusion targets. J. Macromol. Sci. B: Phys. 44, 237248.CrossRefGoogle Scholar
Schillaci, F., Anzalone, A., Cirrone, G.A.P., Carpinelli, M., Cuttone, G., Cutroneo, M., De Martinis, C., Giove, D., Korn, G., Maggiore, M., Manti, L., Margarone, D., Musumarra, A., Perozziello, F.M., Petrovic, I., Pisciotta, P., Renis, M., Ristic-Fira, A., Romano, F., Romano, F.P., Schettino, G., Scuderi, V., Torrisi, L., Tramontana, A. & Tudisco, S. (2014). ELIMED, MEDical and multidisciplinary applications at ELI-Beamlines. J. Phys.: Conf. Ser. 508, 012010.Google Scholar
Schrader, B. (1989). Raman/Infrared Atlas of Organic Compounds. Weinheim: VCH. ISBN 3–527–26969-X.Google Scholar
Shahil, K.M. & Balandin, A.A. (2012). Graphene–multilayer graphene nanocomposites as highly efficient thermal interface materials. Nano Lett. 12, 861867.Google Scholar
Shirkov, G.D. & Zschomack, G. (1996). Electron Impact Ion Source for Charged Heavy Ions. Gottingen: ViewegPubl.CrossRefGoogle Scholar
Spyrou, K., Gournis, D. & Rudolf, P. (2013). Hydrogen storage in graphene-based materials: Efforts towards enhanced hydrogen absorption. ECS J. Solid State Sci. Technol. 2, M3160M3169.Google Scholar
Torrisi, L. (2014 a). Ion energy enhancement from TNSA plasmas obtained from advanced targets. Laser Part. Beams 32, 383389.Google Scholar
Torrisi, L. (2014 b). Ion acceleration and D–D nuclear fusion in laser-generated plasma from advanced deuterated polyethylene. Molecules 19, 1705217065.Google Scholar
Torrisi, L., Calcagno, L., Giulietti, D., Cutroneo, M., Zimbone, M. & Skala, J. (2015 a). Laser irradiations of advanced targets promoting absorption resonance for ion acceleration in TNSA regime. Nucl. Instrum. Methods B 355, 221226.Google Scholar
Torrisi, L., Caridi, F. & Giuffrida, L. (2011). Protons and ion acceleration from thick targets at 1010 W/cm2 laser pulse intensity. Laser Part. Beams 29, 2937.Google Scholar
Torrisi, L., Ceccio, G. & Cutroneo, M. (2016). Laser-generated plasma by carbon nanoparticles embedded into polyethylene. Nucl. Instrum. Methods Phys. Res. B 375, 9399.CrossRefGoogle Scholar
Torrisi, L., Cutroneo, M., Andò, L. & Ullschmied, J. (2013). Thomson parabola spectrometry for gold laser-generated plasmas. Phys. Plasmas 20, 023106.CrossRefGoogle Scholar
Torrisi, L., Cutroneo, M. & Ceccio, G. (2015 b). Effect of metallic nanoparticles in thin foils for laser ion acceleration. Phys. Scr. 9, 015603.Google Scholar
Torrisi, L., Margarone, D., Laska, L., Krasa, J., Velyhan, A., Pfeifer, M., Ullschmied, J. & Ryc, L. (2008). Self-focusing effect in Au-target induced by high power pulsed laser at PALS. Laser Part. Beams 26, 379387.CrossRefGoogle Scholar
Torrisi, L., Visco, A.M., Campo, N. & Caridi, F. (2010). Pulsed laser treatments of polyethylene films. Nucl. Instrum. Methods Phys. Res. B 268, 31173121.Google Scholar
Wolowski, J., Badziak, J., Parys, P., Rosinski, M., Ryc, L., Jungwirth, K., Krasa, J., Laska, L., Pfeifer, M., Rohlena, K., Ullschmied, J., Mezzasalma, A., Torrisi, L., Gammino, S., Hora, H. & Boody, F.P. (2004). The influence of pre-pulse plasma on ion and X-ray emission from Ta plasma produced by a high-energy laser pulse. Czech. J. Phys. 54 (Suppl. C), C385C390.Google Scholar
Yu, L.Z., Zhiming, T., George, P.S. & Dan, L. (2015). Scalable production of graphene via wet chemistry: Progress and challenges. Mater. Today 18, 73.Google Scholar
Zeil, K., Kraft, S.D., Bock, S., Bussmann, M., Cowan, T.E., Kluge, T., Metzkes, J., Richter, T., Sauerbrey, R. & Schramm, U. (2010). The scaling of proton energies in ultrashort pulse laser plasma acceleration. New J. Phys. 12, 045015.Google Scholar