Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-05T04:42:59.315Z Has data issue: false hasContentIssue false

Laser triggered micro-lens for focusing and energy selection of MeV protons

Published online by Cambridge University Press:  28 February 2007

O. WILLI
Affiliation:
Heinrich Heine Universität Düsseldorf, Düsseldorf, Germany
T. TONCIAN
Affiliation:
Heinrich Heine Universität Düsseldorf, Düsseldorf, Germany
M. BORGHESI
Affiliation:
The Queen's University Belfast, Belfast, Northern Ireland, United Kingdom
J. FUCHS
Affiliation:
LULI, Ecole Polytechnique, Palaiseau, France
E. D'HUMIÈRES
Affiliation:
LULI, Ecole Polytechnique, Palaiseau, France Centre de Physique Théorique, CNRS-Ecole Polytechnique, Palaiseau, France
P. ANTICI
Affiliation:
LULI, Ecole Polytechnique, Palaiseau, France
P. AUDEBERT
Affiliation:
LULI, Ecole Polytechnique, Palaiseau, France
E. BRAMBRINK
Affiliation:
LULI, Ecole Polytechnique, Palaiseau, France
C. CECCHETTI
Affiliation:
The Queen's University Belfast, Belfast, Northern Ireland, United Kingdom
A. PIPAHL
Affiliation:
Heinrich Heine Universität Düsseldorf, Düsseldorf, Germany
L. ROMAGNANI
Affiliation:
The Queen's University Belfast, Belfast, Northern Ireland, United Kingdom

Abstract

We present a novel technique for focusing and energy selection of high-current, MeV proton/ion beams. This method employs a hollow micro-cylinder that is irradiated at the outer wall by a high intensity, ultra-short laser pulse. The relativistic electrons produced are injected through the cylinder's wall, spread evenly on the inner wall surface of the cylinder, and initiate a hot plasma expansion. A transient radial electric field (107–1010 V/m) is associated with the expansion. The transient electrostatic field induces the focusing and the selection of a narrow band component out of the broadband poly-energetic energy spectrum of the protons generated from a separate laser irradiated thin foil target that are directed axially through the cylinder. The energy selection is tunable by changing the timing of the two laser pulses. Computer simulations carried out for similar parameters as used in the experiments explain the working of the micro-lens.

Type
Research Article
Copyright
© 2007 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Borghesi, M., Audebert, P., Bulanov, S.V., Cowan, T., Fuchs, J., Gauthier, J.C., MacKinnon, A.J., Patel, P.K., Pretzler, G., Romagnani, L., Schiavi, A., Toncian, T. & Willi, O. (2005). High-intensity laser-plasma interaction studies employing laser-driven proton probes. Laser Part. Beams 23, 291295.Google Scholar
Borghesi, M., Bulanov, S., Campbell, D.H., Clarke, R.J., Esirkepov, T.Z., Galimberti, M., Gizzi, L.A., MacKinnon, A.J., Naumova, N.M., Pegoraro, F., Ruhl, H., Schiavi, A. & Willi, O. (2002). Macroscopic evidence of soliton formation in multiterawatt laser-plasma interaction. Phys. Rev. Lett. 88, 135002/1-4.Google Scholar
Borghesi, M., MacKinnon, A.J., Campbell, D.H., Hicks, D.G., Kar, S., Patel, P.K., Price, D., Romagnani, L., Schiavi, A. & Willi, O. (2004). Multi-MeV proton source investigations in ultra intense laser-foil interactions. Phys. Rev. Lett. 92, 055003/1-4.Google Scholar
Borghesi, M., Schiavi, A., Campbell, D.H., Haines, M.G., Willi, O., MacKinnon, A.J., Patel, P., Galimberti, M. & Gizzi, L.A. (2003). Proton imaging detection of transient electromagnetic fields in laser-plasma interactions (invited). Revi. Sci. Instr. 74, 16881693.Google Scholar
Bulanov, S.V., Esirkepov, T.Z., Khoroshkov, V.S., Kunetsov, A.V. & Pegoraro, F. (2002). Oncological hydrotherapy with laser ion accelerators. Phys. Lett. A 299, 240247.Google Scholar
Clark, E.L., Krushelnick, K., Davies, J.R., Zepf, M., Tatarakis, M., Beg, F.N., Machacek, A., Norreys, P.A., Santala, M.I.K., Watts, I. & Dangor, A.E. (2000). Measurements of energetic proton transport through magnetized plasma from intense laser interactions with solids. Phys. Rev. Lett. 84, 670673.Google Scholar
Gordienko, S., Baeva, T. & Pukhov, A. (2006). Focusing of laser-generated ion beams by a plasma cylinder: Similarity theory and the thick lens formula. Phys. Plasmas 13, 063103/1-6.Google Scholar
Hegelich, B.M., Albright, B.J., Cobble, J., Flippo, K., Letzring, S., Paffett, M., Ruhl, H., Schreiber, J., Schulze, R.K. & Fernandez, J.C. (2006). Laser acceleration of quasi-monoenergetic MeV ion beams. Nature 439, 441444.Google Scholar
Lefebvre, E., Cochet, N., Fritzler, S., Malka, V., Aleonard, M.M., Chemin, J.F., Darbon, S., Disdier, L., Faure, J., Fedotoff, A., Landoas, O., Malka, G., Meot, V., Morel, P., Le Gloahec, M.R., Rouyer, A., Rubbelynck, C., Tikhonchuk, V., Wrobel, R., Andebert, P. & Rousseaux, C. (2003). Electron and photon production from relativistic laser-plasma interactions. Nucl. Fusion 43, 629633.Google Scholar
MacKinnon, A.J., Patel, P.K., Town, R.P., Edwards, M.J., Phillips, T., Lerner, S.C., Price, D.W., Hicks, D., Key, M.H., Hatchett, S., Wilks, S.C., Borghesi, M., Romagnani, L., Kar, S., Toncian, T., Pretzler, G., Willi, O., Koenig, M., Martinolli, E., Lepape, S., Benuzzi-Mounaix, A., Audebert, P., Gauthier, J.C., King, J., Snavely, R., Freeman, R.R. & Boehlly, T. (2004). Proton radiography as an electromagnetic field and density perturbation diagnostic. Rev. Sci. Instr. 75, 35313536.Google Scholar
Mora, P. (2003). Plasma expansion into a vacuum. Phys. Rev. Lett. 90, 185002/1-4.Google Scholar
Patel, P.K., MacKinnon, A.J., Key, M.H., Cowan, T.E., Foord, M.E., Allen, M., Price, D.F., Ruhl, H., Springer, P.T. & Stephens, R. (2003). Isochoric heating of solid-density matter with an ultrafast proton beam. Phys. Rev. Lett. 91, 125004/1-4.Google Scholar
Romagnani, L., Fuchs, J., Borghesi, M., Antici, P., Audebert, P., Ceccherini, F., Cowan, T., Grismayer, T., Kar, S., Macchi, A., Mora, P., Pretzler, G., Schiavi, A., Toncian, T. & Willi, O. (2005). Dynamics of electric fields driving the laser acceleration of multi-MeV protons. Phys. Rev. Lett. 95, 195001/1-4.Google Scholar
Roth, M., Cowan, T.E., Key, M.H., Hatchett, S.P., Brown, C., Fountain, W., Johnson, J., Pennington, D.M., Snavely, R.A., Wilks, S.C., Yasuike, K., Ruhl, H., Pegoraro, F., Bulanov, S.V., Campbell, E.M., Perry, M.D. & Powell, H. (2001). Fast ignition by intense laser-accelerated proton beams. Phys. Rev. Lett. 86, 436439.Google Scholar
Schwoerer, H., Pfotenhauer, S., Jackel, O., Amthor, K.U., Liesfeld, B., Ziegler, W., Sauerbrey, R., Ledingham, K.W.D. & Esirkepov, T. (2006). Laser-plasma acceleration of quasi-monoenergetic protons from microstructured targets. Nature 439, 445448.Google Scholar
Snavely, R.A., Key, M.H., Hatchett, S.P., Cowan, T.E., Roth, M., Phillips, T.W., Stoyer, M.A., Henry, E.A., Sangster, T.C., Singh, M.S., Wilks, S.C., MacKinnon, A., Offenberger, A., Pennington, D.M., Yasuike, K., Langdon, A.B., Lasinski, B.F., Johnson, J., Perry, M.D. & Campbell, E.M. (2000). Intense high-energy proton beams from petawatt-laser irradiation of solids. Phys. Rev. Lett. 85, 29452948.Google Scholar
Spencer, I., Ledingham, K.W.D., Singhal, R.P., McCanny, T., McKenna, P., Clark, E.L., Krushelnick, K., Zepf, M., Beg, F.N., Tatarakis, M., Dangor, A.E., Norreys, P.A., Clarke, R.J., Allott, R.M. & Ross, I.N. (2001). Laser generation of proton beams for the production of short-lived positron emitting radioisotopes. Nucl. Inst. Meth. Phys. Res. B 183, 449458.Google Scholar
Toncian, T., Borghesi, M., Fuchs, J., d'Humieres, E., Antici, P., Audebert, P., Brambrink, E., Cecchetti, C.A., Pipahl, A., Romagnani, L. & Willi, O. (2006). Ultrafast laser-driven micro lens to focus and energy-select mega-electron volt protons. Science 312, 410413.Google Scholar
Wattellier, B., Fuchs, J., Zou, J.P., Abdeli, K., Pepin, H. & Haefner, C. (2004). Repetition rate increase and diffraction-limited focal spots for a nonthermal-equilibrium 100-TW Nd : glass laser chain by use of adaptive optics. Opt. Lett. 29, 24942496.Google Scholar
Wilks, S.C., Langdon, A.B., Cowan, T.E., Roth, M., Singh, M., Hatchett, S., Key, M.H., Pennington, D., MacKinnon, A. & Snavely, R.A. (2001). Energetic proton generation in ultra-intense laser–solid interactions. Phys. Plasmas 8, 542549.Google Scholar
Willi, O., Toncian, T., Borghesi, M. & Fuchs, J. (2005). Laserbestrahlter Hohlzylinder als Linse für Ionenstrahlen. Deutsche Patentanmeldung 10 2005 012 059.8 PILZ.Google Scholar
Yin, L., Albright, B.J, Hegelich, B.M. & Fernandez, J.C. (2006). GeV laser ion acceleration from ultrathin targets: The laser break-out afterburner. Laser Part. Beams 24, 291298.Google Scholar