Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-28T00:50:34.615Z Has data issue: false hasContentIssue false

Ion beam divergence due to plasma heating in the Ampfion diode

Published online by Cambridge University Press:  09 March 2009

Craig L. Olson
Affiliation:
Plasma Theory Division 1241, Sandia National Laboratories, Albuquerque, New Mexico 87185

Abstract

In the Ampfion diode, an ion beam is extracted from an anode plasma that is being pushed away from the cathode by a rising magnetic field. There is concern that ion heating in the anode plasma sheath may result in a significant ion beam divergence. To investigate this possibility, a comparison of Z pinches, θ pinches, and Ampfion is made. Ampfion sheath scenarios are examined and a simple argument is presented that indicates that an anomalous resistivity should develop. An upper bound estimate of the ion divergence is calculated, and examples are given for PBFA-II parameters. For a small radius diode with a high density anode plasma, it is shown that ion beam divergence due to plasma heating should not be a problem. For a large radius diode with a low density anode plasma, it is shown that ion beam divergence due to plasma heating is a problem, but that an Ampfion filtering mechanism should select a cool portion of the heated ions and help to alleviate this problem.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Chodura, R. 1975 Nucl. Fusion, 15, 55.CrossRefGoogle Scholar
Davidson, R. C. & Krall, N. A. 1977 Nucl. Fusion, 17, 1313.CrossRefGoogle Scholar
Davidson, R. C. & Ogden, J. M. 1975 Phys. Fluids, 18, 1045.CrossRefGoogle Scholar
Gentle, K. W., Leifeste, G. & Richardson, R. 1978 Phys. Rev. Lett. 40, 317.CrossRefGoogle Scholar
Hamasaki, S. & Krall, N. A. 1976 Nucl. Fusion, 16, 599.CrossRefGoogle Scholar
Hamasaki, S. & Krall, N. A. 1977 Phys. Fluids, 20, 229.CrossRefGoogle Scholar
Hamasaki, S., Krall, N. A., Wagner, C. E. & Byrne, R. N. 1977 Phys. Fluids, 20, 65.CrossRefGoogle Scholar
Hsing, W. W. 1983, private communication.Google Scholar
Jackson, J. D. 1963 Classical Electrodynamics, p. 226, John Wiley, New York.Google Scholar
Krall, N. A., Hamasaki, S., Davidson, R. C., Liewer, P. C., Wagner, C., Gladd, N. T., Hewett, D. W., Nielson, C. W., Oliphant, T. A. & Sgro, A. G. 1975 Plasma Physics and Controlled Nuclear Fusion Research III (IAEA, Vienna), 373.Google Scholar
Krall, N. A. & Liewer, P. C. 1971 Phys. Rev. A4, 2094.CrossRefGoogle Scholar
Liewer, P. C. & Krall, N. A. 1973 Phys. Fluids, 16, 1953.CrossRefGoogle Scholar
Mascheroni, P. L. 1977 Phys. Rev. Lett. 39, 197.CrossRefGoogle Scholar
Mendel, C. W. Jr. 1982 Sandia National Laboratories Report, SAND82–0304.Google Scholar
Mendel, C. W. Jr. & Mills, G. S. 1982 J. Appl. Phys. 53, 7265.CrossRefGoogle Scholar
Sgro, A. G. 1978 Phys. Fluids, 21, 1410.CrossRefGoogle Scholar
Sgro, A. G. & Neilson, C. W. 1976 Phys. Fluids, 19, 126.CrossRefGoogle Scholar
Söldner, F., Dum, C. T. & Steuer, K. H. 1977 Phys. Rev. Lett. 39, 194.CrossRefGoogle Scholar
VanDevender, J. P. 1982, private communication.Google Scholar
VanDevender, J. P., Hoffman, J. M., Mills, G. S. & Mendel, C. W. Jr. 1983 Comments on Plasma Phys. and Controlled Fusion, 7, 207.Google Scholar