Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-19T08:33:30.622Z Has data issue: false hasContentIssue false

Investigation of stimulated Raman scattering using a short-pulse diffraction limited laser beam near the instability threshold

Published online by Cambridge University Press:  18 February 2009

J.L. Kline*
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico
D.S. Montgomery
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico
C. Rousseaux
Affiliation:
Commissariat à l'Energie Atomique, CEA, DAM, DIF, Arpajon, France
S.D. Baton
Affiliation:
LULI, UMR 7605, CNRS-CEA-Ecole Polytechnique-Université Paris VI, Ecole Polytechnique, Palaiseau, France
V. Tassin
Affiliation:
Commissariat à l'Energie Atomique, CEA, DAM, DIF, Arpajon, France
R.A. Hardin
Affiliation:
West Virginia University, Morgantown, West Virginia
K.A. Flippo
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico
R.P. Johnson
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico
T. Shimada
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico
L. Yin
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico
B.J. Albright
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico
H.A. Rose
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico
F. Amiranoff
Affiliation:
LULI, UMR 7605, CNRS-CEA-Ecole Polytechnique-Université Paris VI, Ecole Polytechnique, Palaiseau, France
*
Address correspondence and reprint requests to: John Kline, P-24, Plasma Physics, MS: E526, Los Alamos National Laboratory, Los Alamos, NM 87545. E-mail: [email protected]

Abstract

Short pulse laser plasma interaction experiments using diffraction limited beams provide an excellent platform to investigate the fundamental physics of stimulated Raman scattering. Detailed understanding of these laser plasma instabilities impacts the current inertial confinement fusion ignition designs and could potentially impact fast ignition when higher energy lasers are used with longer pulse durations (>1 kJ and >1 ps). Using short laser pulses, experiments can be modeled over the entire interaction time of the laser using particle-in-cell codes to validate our understanding quantitatively. Experiments have been conducted at the Trident laser facility and the Laboratoire pour l'Utilisation des Lasers Intenses (LULI) to investigate stimulated Raman scattering near the threshold of the instability using 527 nm and 1059 nm laser light, respectively, with 1.5–3.0 ps pulses. In both experiments, the interaction beam was focused into pre-ionized helium gas-jet plasma. Measurements of the reflectivity as a function of intensity and kλD were completed at the Trident laser facility, where k is the electron plasma wave number and λD is the plasma Debye length. At LULI, a 300 fs Thomson scattering probe is used to directly measure the density fluctuations of the driven electron plasma and ion acoustic waves. Work is currently underway comparing the results of the experiments with simulations using the VPIC particle-in-cell code. Details of the experimental results are presented in this manuscript.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bohm, D. & Gross, E.P. (1949). Theory of plasma oscillations A: Origins of medium-like behavior. Phys. Rev. 75, 18511864.CrossRefGoogle Scholar
Bowers, K.J., Albright, B.J., Yin, L., Bergen, B., Barker, K.J. & Kerbyson, D.J. (2008 a). 0.374 Pflop/s Trillion-particle kinetic modeling of laser plasma interaction on roadrunner. Proceedings of the 2008 ACM/IEEE conference on Supercomputing, 111.Google Scholar
Bowers, K.J., Albright, B.J., Yin, L.Bergen, B. & Kwan, T.J.T. (2008 b). Ultrahigh performance three-dimensional electromagnetic relativistic kinetic plasma simulation. Phys. Plasmas 15, 055703.CrossRefGoogle Scholar
Clark, D.S. & Fisch, N.J. (2005). Raman laser amplification in preformed and ionizing plasmas. Lasers Part. Beams 23, 101106.CrossRefGoogle Scholar
Cobble, J.A., Johnson, R.P. & Mason, R.J. (1997). High-intensity illumination of an exploding foil. Phys. Plasmas 4, 30063011.CrossRefGoogle Scholar
Denavit, J. & Phillion, D.W. (1994). Laser ionization and heating of gas targets for long-scale-length instability experiments. Phys. Plasmas 1, 19711984.CrossRefGoogle Scholar
Dewar, R.L. (1972). Frequency-shift due to trapped particles. Phys. Fluids 15, 712.CrossRefGoogle Scholar
DeWispelaere, E., Malka, V., Huller, S., Amiranoff, S.F., Baton, S., Bonadio, R., Casanova, M., Dorchies, F., Haroutunian, R. & Modena, F. (1999). Formation of plasma channels in the interaction of a nanosecond laser pulse at moderate intensities with helium gas jets. Phys. Rev. E 59, 71107120.CrossRefGoogle Scholar
Fisch, N.J. & Malkin, V.M. (2003). Generation of ultrahigh intensity laser pulses. Phys. Plasmas 10, 20562063.CrossRefGoogle Scholar
Kline, J.L., Montgomery, D.S., Yin, L., Hardin, R.A., Flippo, K.A., Shimada, T., Johnson, R.P., Rose, H.A. & Albright, B.J. (2008). Investigation of laser plasma instabilities using picoseconds laser pulses. J. Phys. 112, 022042–022042/4.Google Scholar
Kline, J.L., Montgomery, D.S., Yin, L., DuBois, D.F., Albright, B.J., Bezzerides, B., Cobble, J.A., Dodd, E.S., Fernandez, J.C., Johnson, R.P., Kindel, J.M. & Rose, H.A. (2005). Observation of a transition from fluid to kinetic nonlinearities for Langmuir waves driven by stimulated Raman backscatter. Phys. Rev. Lett. 94, 175003–175003/4.CrossRefGoogle ScholarPubMed
Kline, J.L. & Montgomery, D.S. (2005). Kinetic and fluid Langmuir wave nonlinearities driven by stimulated Raman scattering in a diffraction limited single-hot-spot. Lasers Part. Beams 23, 2731.CrossRefGoogle Scholar
Kline, J.L., Montgomery, D.S., Yin, L., DuBois, D.F., Albright, B.J., Bezzerides, B., Cobble, J.A., Dodd, E. S., DuBois, D.F., Fernández, J.C., Johnson, R.P., Kindel, J.M., Rose, H.A., Vu, H.X. & Daughton, W. (2006). Different kλD regimes for nonlinear effects on Langmuir waves. Phys. Plasmas 13, 055906-1/055906-4.CrossRefGoogle Scholar
Lindl, J. (1995). Development of the indirect-drive approach to inertial confinement fusion and the target physic basis for ignition and gain. Phys. Plasmas 2, 39334024.CrossRefGoogle Scholar
Manheimer, W.M. & Flynn, R.W. (1971). Formation of stationary large amplitude waves in plasmas. Phys. Fluids 14, 2393.CrossRefGoogle Scholar
Moncur, N.K., Johnson, R.P., Watt, R.G. & Gibson, R.B. (1995). Trident: A versatile high-power Nd:glass laser facility for inertial confinement fusion experiments. Appl. Opt. 34, 42744283.CrossRefGoogle ScholarPubMed
Montgomery, D.S., Johnson, R.P., Cobble, J.A., Fernandez, J.C., Lindman, E.L., Rose, H.A. & Estabrook, K.G. (1999). Characterization of plasma and laser conditions for single hot spot experiments. Laser Part. Beams 17, 349359.CrossRefGoogle Scholar
Morales, G.J. & O'Neil, T.M. (1972). Nonlinear frequency shift of an electron plasma wave. Phys. Rev. Lett. 28, 417420.CrossRefGoogle Scholar
Ping, Y., Cheng, W., uckewer, S., Clark, D.S. & Fisch, N.J. (2004). Amplification of ultrashort laser pulses by a resonant Raman scheme in a gas-jet plasma. Phys. Rev. Lett. 92, 175007-1/175007-4.CrossRefGoogle Scholar
Roth, M., Cowan, T.E., Key, M.H., Hatchett, S.P., Brown, C., Fountain, W., Johnson, J., Pennington, D.M., Snavely, R.A., Wilks, S.C., Yasuike, K., Ruhl, H., Pegoraro, F., Bulanov, S.V., Campbell, E.M., Perry, M. D. & Powell, H. (2001). Fast ignition by intense laser-accelerated proton beams. Phys. Rev. Lett. 86, 436439.CrossRefGoogle ScholarPubMed
Rousseaux, C., Casanova, M., Gremillet, L., Loiseau, P., Le Gloahec, M.R., Baton, S.D., Amiranoff, F., Audebert, P., Popescu, H., Adam, J. C., Heron, A., Huller, S., Mora, P. & Pesme, D. (2006 a). Transient development of SRS and SBS in ps-time scale by using sub-ps Thomson diagnostic. J. Phys. 133, 259263.Google Scholar
Rousseaux, C., Gremillet, L., Casanova, M., Loiseau, P., Le Gloahec, M.R., Baton, S.D., Amiranoff, F., Adam, J.C. & Heron, A. (2006 b). Transient development of backward stimulated Raman and Brillouin scattering on a picosecond time scale measured by subpicosecond Thomson diagnostic. Phys. Rev. Lett. 97, 015001/015001-4.CrossRefGoogle ScholarPubMed
Rose, H.A. & Yin, L. (2008). Langmuir wave formalization instability. Phys. Plasmas 15, 042311.CrossRefGoogle Scholar
Strickland, D. & Mourou, G. (1985). Compression of amplified chirped optical pulses. Opt. Commun. 56, 219303.CrossRefGoogle Scholar
Tabak, M., Hammer, J., Glinsky, M.E., Kruer, W.L., Wilks, S.C., Woodworth, J., Campbell, E.M., Perry, M.D. & Mason, R.J. (1994). Ignition and high-gain with ultrapowerful lasers. Phys. Plasmas 1, 16261634.CrossRefGoogle Scholar
Wattellier, B., Fuchs, J., Zou, J.P., Chanteloup, J.C., Bandulet, H., Michel, P., Labaune, C., Depierreux, S., Kudryashov, A. & Aleksandrov, A. (2003). Generation of a single hot spot by use of a deformable mirror and study of its propagation in an underdense plasma. J. Opt. Soc. Am B 20, 16321642.CrossRefGoogle Scholar
Yin, L., Albright, B.J., Bowers, K.J., Daughton, W. & Rose, H.A. (2007). Saturation of backward stimulated scattering of a laser beam in the kinetic regime. Phys. Rev. Lett. 99, 265004/265004.4.CrossRefGoogle ScholarPubMed
Yin, L., Albright, B.J., Bowers, K.J., Daughton, W. & Rose, H.A. (2008 a). Saturation of backward stimulated scattering of laser in kinetic regime: Wavefront bowing, trapped particle modulational instability, and trapped particle self-focusing of plasma waves. Phys. Plasmas 15, 013109/013109-15.CrossRefGoogle Scholar
Yin, L., Albright, B.J., Bowers, K.J., Kline, J.L., Montgomery, D.S., Flippo, K.A. & Rose, H.A. (2008 b). Kinetic simulations of stimulated Raman and Brillouin scattering of Trident short-pulse laser in a single-hot-spot. J. Phys. 112, 022033/022033-4.Google Scholar
Zvorykin, V.D., Didenko, N.V., Ionin, A.A., Kholin, I.V., Konyashchenko, A.V., Krokhin, O.N., Levchenko, A.O., Mavritskii, A.O., Mesyats, G.A., Molchanov, A.G., Rogulev, M.A., Seleznev, L.V., Sinitsyn, D.V., Tenyakov, S. Yu., Ustinovskii, N.N. & Zayarnyi, D.A. (2007). GARPUN-MTW: A hybrid Ti:Sapphire/KrF laser facility for simultaneous amplification of subpicosecond/nanosecond pulses relevant to fast-ignition ICF concept. Lasers Part. Beams 25, 435451.CrossRefGoogle Scholar