Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-26T19:09:45.573Z Has data issue: false hasContentIssue false

Investigation of magnesium laser ablated plumes with Thomson scattering

Published online by Cambridge University Press:  09 March 2012

E. Nedanovska
Affiliation:
Centre for Plasma Physics, School of Mathematics and Physics, Queen's University Belfast, Belfast, United Kingdom
G. Nersisyan
Affiliation:
Centre for Plasma Physics, School of Mathematics and Physics, Queen's University Belfast, Belfast, United Kingdom
C.L.S. Lewis
Affiliation:
Centre for Plasma Physics, School of Mathematics and Physics, Queen's University Belfast, Belfast, United Kingdom
D. Riley*
Affiliation:
Centre for Plasma Physics, School of Mathematics and Physics, Queen's University Belfast, Belfast, United Kingdom
*
Address correspondence and reprint requests to: D. Riley, School of Mathematics and Physics, Queen's University Belfast, Belfast, BT7 1NN, United Kingdom. E-mail: [email protected]

Abstract

Optical Thomson scattering has been implemented as a diagnostic of laser ablated plumes generated with second harmonic Nd:YAG laser radiation at 532 nm. Thomson scattering data with both spatial and temporal resolution has been collected, giving both electron density, and temperature distributions within the plume as a function of time. Although the spatial profiles do not match very well for simple models assuming either isothermal or isentropic expansion, consideration of the measured ablated mass indicates an isothermal expansion fits better than an isentropic expansion and indeed, at late time, the spatial profile of temperature is almost consistent with an isothermal approximation.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Afanasiev, Y.V., Isakov, V.A., Zavestovskaya, I.N., Chichkov, B.N., Von Alvensleben, F. & Welling, H. (1999). Hydrodynamic model for UV laser ablation of polymers. Laser Part. Beams 17, 585590.CrossRefGoogle Scholar
Altun, Z., Yumak, A., Badnell, N.R., Loch, S.D. & Pindzola, M.S. (2006). Dielectronic recombination data for dynamic finite-density plasmas Astron. Astrophys. 447, 11651174.Google Scholar
Amoruso, S., Bruzzese, R., Velotta, R. & Spinelli, N. (1999). Characterization of laser-ablation plasmas. J. Phys. B 32, R131.CrossRefGoogle Scholar
Anisimov, S.I., Bauerle, D. & Luk'yanchuk, B.S. (1993). Gas dynamics and film properties in pulsed-laser deposition of materials. Phys. Rev. B 48, 1207612081.CrossRefGoogle Scholar
Bockasten, K. (1956). Polarizability of Mg+2 derived from hydrogen-like terms of Mg II. Phys. Rev. 102, 729730.CrossRefGoogle Scholar
Caridi, F., Torrisi, L., Margarone, D. & Borrieli, A. (2008). Investigations on low temperature laser-generated plasmas. Laser Part. Beams 26, 265271.CrossRefGoogle Scholar
Chen, K.R., King, T.C., Hes, J.H., Leboeuf, J.N., Geohegan, D.B, Wood, R.F., Puretzky, A.A. & Donato, J.M. (1999). Theory and numerical modeling of the accelerated expansion of laser-ablated materials near a solid surface. Phys Rev. B 60, 83738382.CrossRefGoogle Scholar
Chrisey, D.B. & Hubler, G.K. (2003). Pulsed Laser Deposition of Thin Films. New York: Wiley.Google Scholar
Delserieys, A., Khattak, F.Y., Pedregosa Gutierrez, J., Lewis, C.L.S. & Riley, D. (2008 a). Optical Thomson scatter from laser-ablated plumes. Appl. Phys. Lett. 92, 011502.CrossRefGoogle Scholar
Delserieys, A., Khattak, F.Y., Sahoo, S., Gribakin, G., Lewis, C.L.S. & Riley, D. (2008 b). Raman satellites in optical scattering from a laser-ablated Mg plume. Phys. Rev. A 78, 055404.CrossRefGoogle Scholar
Delserieys, A., Khattak, F.Y., Lewis, C.L.S. & Riley, D. (2009). Optical Thomson scatter from a laser-ablated magnesium plume. J. Appl. Phys. 106, 083304.CrossRefGoogle Scholar
Doggett, B. & Lunney, J.G. (2009). Langmuir probe characterization of laser ablation plasmas. J. Appl. Phys. 105, 033306.CrossRefGoogle Scholar
Doyle, L.A., Martin, G.W., Al-Khateeb, A., Weaver, I., Riley, D., Lamb, M.J., Morrow, T. & Lewis, C.L.S. (1998). Electron number density measurements in magnesium laser produced plumes. Appl. Surf. Sci. 127–129, 716720.CrossRefGoogle Scholar
Dreyfus, R.W. (1991). Cu0, Cu+, and Cu2 from excimer × ablated copper. J. Appl. Phys. 69, 1721.CrossRefGoogle Scholar
Eason, R. (2006). Pulsed Laser Deposition of Thin Films: Applications-Led Growth of Functional Materials. New York: Wiley.CrossRefGoogle Scholar
Farnsworth, A.V. (1980). Power × driven and adiabatic expansions into vacuum. Phys. Fluids 23, 14961498.CrossRefGoogle Scholar
George, T.V., Englehar, A.G. & DeMichelis, C. (1970). Thomson scattering diagnostics of laser-produced aluminum plasmas. Appl. Phys. Lett. 16, 248.CrossRefGoogle Scholar
Godwal, Y., Tascuk, M.T., Lui, S.L., Tsui, Y.Y. & Fedosejevs, R. (2008). Development of laser-induced breakdown spectroscopy for microanalysis applications. Laser Part. Beams 26, 95103.CrossRefGoogle Scholar
Izawa, Y., Yamanaka, T., Tsuchimori, N., Onishi, M. & Yamanaka, C. (1968). Density measurements of the laser produced plasma by laser light scattering Jpn. J. Appl. Phys. 7, 954.CrossRefGoogle Scholar
Izawa, Y., Yokoyama, M. & Yamanaka, C. (1969). Collective scattering of laser light from laser produced LiH plasma. Jpn. J. Appl. Phys. 8, 965.CrossRefGoogle Scholar
Kelly, R. & Dreyfus, R.W. (1988). Reconsidering the mechanisms of laser sputtering with Knudsen-layer formation taken into account. Nucl. Instrum. Meth. B 32, 341348.CrossRefGoogle Scholar
Kumar, A., George, S., Singh, R.K. & Nampoori, V.P.N. (2010). Influence of laser beam intensity profile on propagation dynamics of laser-blow-off plasma plume. Laser Part. Beams 28, 387392.CrossRefGoogle Scholar
Liu, L., Xia, C.-Q., Liu, J.-S., Wang, W.-T., Cai, Y., Wang, C., Li, R.-X. & Xu, Z.-Z. (2010). Generation of attosecond X-ray pulses via Thomson scattering of counter-propagating laser pulses. Laser Part. Beams 28, 2734.CrossRefGoogle Scholar
Lunney, J.G. (1995). Pulsed laser deposition of metal and metal multilayer films. Appl. Surf. Sci. 86, 79.CrossRefGoogle Scholar
Martin, G.W., Doyle, L.A., Al-Khateeb, A., Weaver, I., Riley, D., Lamb, M.J., Morrow, T. & Lewis, C.L.S. (1998). Three dimensional number density mapping in the plume of a low temperature laser ablated magnesium plasma. Appl. Surf. Sci. 127–129, 710715CrossRefGoogle Scholar
Pert, G.J. (1980). Self-similar flows with uniform velocity gradient and their use in modelling the free expansion of polytropic gases. J. Fluid Mech. 100, 257277.CrossRefGoogle Scholar
Riley, D., Weaver, I.Morrow, T., Lamb, M.J., Martin, G.W., Doyle, L.A., Al-Khateeb, A. & Lewis, C.L.S. (2000). Spectral simulation of laser ablated magnesium plasmas. Plasma Sour. Sci. Technol. 9, 270278.CrossRefGoogle Scholar
Rumsby, P.T. & Paul, J.W.M. (1974). Temperature and density of an expanding laser produced plasma. Plasma Phys. 16, 247.CrossRefGoogle Scholar
Schade, W., Bohling, C., Hohmann, K. & Scheel, D. (2006). Laser-induced plasma spectroscopy for mine detection and verification. Laser Part. Beams 24, 241247.CrossRefGoogle Scholar
Singh, R.K. & Narayan, J. (1990). Pulsed-laser evaporation technique for deposition of thin films: Physics and theoretical model. Phys. Rev. B 41, 88438859.CrossRefGoogle ScholarPubMed
Sneep, M. & Ubachs, W. (2005). Direct measurement of the Rayleigh scattering cross section in various gases. J. Quant. Spectrosc. Radiat. Transf. 92, 293310.CrossRefGoogle Scholar
Stapleton, M.W., McKiernan, A.P. & Mosnier, J.-P. (2005). Expansion dynamics and equilibrium conditions in a laser ablation plume of lithium: Modeling and experiment. J. Appl. Phys. 97, 064904.CrossRefGoogle Scholar
Thum-Jaeger, A., Sinha, B.K. & Rohr, K.P. (2000). Experimental investigations of quenching of ionization states in a freely expanding, recombining laser-produced plasma. Phys. Rev. E 61, 30633068.CrossRefGoogle Scholar
Warner, K. & GM Hieftje, G.M. (2002). Thomson scattering from analytical plasmas. Spectrochimica Acta B, 57 201241.CrossRefGoogle Scholar