Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-19T03:51:53.120Z Has data issue: false hasContentIssue false

Interaction of two plasma jets produced successively from Cu target

Published online by Cambridge University Press:  07 September 2010

A. Kasperczuk
Affiliation:
Institute of Plasma Physics and Laser Microfusion, Warsaw, Poland
T. Pisarczyk*
Affiliation:
Institute of Plasma Physics and Laser Microfusion, Warsaw, Poland
J. Badziak
Affiliation:
Institute of Plasma Physics and Laser Microfusion, Warsaw, Poland
S. Borodziuk
Affiliation:
Institute of Plasma Physics and Laser Microfusion, Warsaw, Poland
T. Chodukowski
Affiliation:
Institute of Plasma Physics and Laser Microfusion, Warsaw, Poland
P. Parys
Affiliation:
Institute of Plasma Physics and Laser Microfusion, Warsaw, Poland
J. Ullschmied
Affiliation:
Institute of Plasma Physics ASCR, v.v.i., Prague, Czech Republic
E. Krousky
Affiliation:
Institute of Physics ASCR, v.v.i., Prague, Czech Republic
K. Masek
Affiliation:
Institute of Physics ASCR, v.v.i., Prague, Czech Republic
M. Pfeifer
Affiliation:
Institute of Physics ASCR, v.v.i., Prague, Czech Republic
K. Rohlena
Affiliation:
Institute of Physics ASCR, v.v.i., Prague, Czech Republic
J. Skala
Affiliation:
Institute of Physics ASCR, v.v.i., Prague, Czech Republic
P. Pisarczyk
Affiliation:
Warsaw University of Technology, ICS, Warsaw, Poland
*
Address correspondence and reprint requests to: Tadeusz Pisarczyk, Institute of Plasma Physics and Laser Microfusion, 23 Hery St., 00-908 Warsaw, Poland. E-mail: [email protected]

Abstract

Our earlier papers demonstrate a very simple method of plasma jet formation, consisting in irradiating a massive planar target of a relatively high atomic number by a partly defocused laser beam. Our present interest is concentrated on interaction of the plasma jet with other media. This paper is aimed at investigations of interaction of two jets launched successively on Cu target. Our attention was paid to the role of radiative cooling in the plasma jet formation. The experiment was carried out at the PALS iodine laser facility. The laser provided a 250-ps (full width at half maximum) pulse with energy of 130 J at the third harmonic frequency (λ3 = 0.438 µm). Two successive jets were produced on a massive flat Cu target provided with a cylindrical channel 5 mm long and 400 µm in diameter. Since the focal spot diameter of the laser beam on the target surface was larger than that of the channel (800 µm), the annular irradiation of the target face resulted in creation of the first plasma jet, whereas the second jet was produced by action of the central part of laser beam on the channel wall. Three-frame interferometric system, X-ray streak camera, and a set of ion collectors were used as diagnostic tools.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Badziak, J., Pisarczyk, T., Chodukowski, T., Kasperczuk, A., Parys, P., Rosiński, M., Wołowski, J., Krousky, E., Krasa, J., Mašek, K., Pfeifer, M., Skala, J., Ullschmied, J., Velyhan, A., Dhareshwar, L.J., Gupta, N.K., Torrisi, L. & Pisarczyk, P. (2009). Formation of a supersonic laser-driven plasma jet in a cylindrical channel. Phys.Plasmas 16, 114506-1/114506-4.CrossRefGoogle Scholar
Bellan, P.M. (2005). Miniconference on astrophysical jets. Phys. Plasmas 12, 058301-1/058301-8.CrossRefGoogle Scholar
Borovsky, J.E. (1987). Double layers and plasma-wave resistivity in extragalactic jets: cavity formation and radio-wave emission. Laser Part. Beams 5, 169175.CrossRefGoogle Scholar
Farley, D.R., Estabrook, K.G., Glendinning, S.G., Glenzer, S.H., Remington, B.A., Shigemori, K., Stone, J.M., Wallance, R.J., Zimmerman, G.B. & Harte, J.A. (1999). Stable dense plasma jets produced at laser power densities around 1014 W/cm2. Phys. Rev. Lett. 83, 19821985.CrossRefGoogle Scholar
Fleury, X., Bouquet, S., Stehle, C., Koenig, M., Batani, D., Benuzzi-Mounaix, A., Chieze, J-P., Grandjouan, N., Grenier, J., Hall, T., Henry, E., Lafon, J-P., Leygnac, S., Malka, V., Marchet, B., Merdji, H., Michaut, C. & Thais, F. (2002). A laser experiment for studying radiative shocks in astrophysics. Laser Part. Beams 20, 263268.CrossRefGoogle Scholar
Hong, W., He, Y., Wen, T., Du, H., Teng, J., Qing, X., Huang, Z., Huang, W., Liu, H., Wang, X., Huang, X., Zhu, Q., Ding, Y. & Peng, H. (2009). Spatial and temporal characteristics of X-ray emission from hot plasma driven by a relativistic femtosecond laser pulse. Laser Part. Beams 27, 1926.CrossRefGoogle Scholar
Jungwirth, K. (2005). Recent highlights of the PALS research program. Laser Part. Beams 23, 177182.CrossRefGoogle Scholar
Kasperczuk, A., Pisarczyk, T., Borodziuk, S., Ullschmied, J., Krousky, E., Masek, K., Rohlena, K., Skala, J. & Hora, H. (2006). Stable dense plasma jets produced at laser power densities around 1014 W/cm2. Phys. Plasmas 13, 062704-1/062704-8.CrossRefGoogle Scholar
Kasperczuk, A., Pisarczyk, T., Borodziuk, S., Ullschmied, J., Krousky, E., Masek, K., Pfeifer, M., Rohlena, K., Skala, J. & Pisarczyk, P. (2007 a). The influence of target irradiation conditions on the parameters of laser-produced plasma jets. Phys. Plasmas 14, 032701-1/032701-4.CrossRefGoogle Scholar
Kasperczuk, A., Pisarczyk, T., Borodziuk, S., Ullschmied, J., Krousky, E., Masek, K., Pfeifer, M., Rohlena, K., Skala, J. & Pisarczyk, P. (2007 b). Interferometric investigations of influence of target irradiation on the parameters of laser-produced plasma jets. Laser Part. Beams 25, 425433.CrossRefGoogle Scholar
Kasperczuk, A., Pisarczyk, T., Badziak, J., Miklaszewski, R., Parys, P., Rosinski, M., Wolowski, J., Stenz, CH., Ullschmied, J., Krousky, E., Masek, K., Pfeifer, M., Rohlena, K., Skala, J. & Pisarczyk, P. (2007 c). Influence of the focal point position on the properties of a laser-produced plasma. Phys. Plasmas 14, 102706-1/102706-8.CrossRefGoogle Scholar
Kasperczuk, A., Pisarczyk, N.N., Demchenko, S.YU., Gus'kov, M., Kalal, M., Ullschmied, J., Krousky, E., Masek, K., Pfeifer, M., Rohlena, K., Skala, J. & Pisarczyk, P. (2009 a). Experimental and theoretical investigations of mechanisms responsible for plasma jet formation at PALS. Laser Part. Beams 27, 583591.CrossRefGoogle Scholar
Kasperczuk, A., Pisarczyk, T., Nicolai, PH., Stenz, CH., Tikhonchuk, V., Kalal, M., Ullschmied, J., Krousky, E., Masek, K., Pfeifer, M., Rohlena, K., Skala, J., Klir, D., Kravarik, J., Kubes, P. & Pisarczyk, P. (2009 b). Investigations of plasma jet interaction with ambient gases by multi-frame interferometric and X-ray pinhole camera systems. Laser Part. Beams 27, 115122.CrossRefGoogle Scholar
Kunzl, TH., Lichters, L. & Meyer-ter-Vehn, J. (2003). Large-amplitude plasma waves and 2 omega p emission driven by laser-generated jets in overdense plasma layers. Laser Part. Beams 21, 115122.CrossRefGoogle Scholar
Lebedev, S.V., Chittenden, J.P., Beg, F.N., Bland, S.N., Ciardi, A., Ampleford, D., Hughes, S., Haines, M.G., Frank, A., Blackman, E.G. & Gardiner, T. (2002). Laboratory astrophysics and collimated stellar outflows: The production of radiatively cooled hypersonic plasma jets. Astrophys. J. 564, 113119.CrossRefGoogle Scholar
Loupias, B., Koenig, M., Falize, E., Bouquet, S., Ozaki, N., Benuzzi-Mounaix, A., Vinci, T., Michaut, C., Rabec Ie Goahec, M., Nazarov, W., Courtois, C., Aglitskiy, Y., Faenov, YA. & Pikuz, T. (2007). Supersonic-jet experiments using a high-energy laser. Phys. Rev. Lett. 99, 265001.CrossRefGoogle ScholarPubMed
Mizuta, A., Yamada, S. & Takabe, H. (2002). Numerical analysis of jest produced by intense laser. Astrophys. J. 567, 635642.CrossRefGoogle Scholar
Nicolai, PH., Tikhonchuk, V.T., Kasperczuk, A., Pisarczyk, T., Borodziuk, S., Rohlena, K. & Ullschmied, J. (2006). Plasma jets produced in a single laser beam interaction with a planar target. Phys. Plasmas 13, 062701-1/062701-8.CrossRefGoogle Scholar
Ryutov, D.D., Drake, R.P. & Remington, B.A. (2000). Criteria for scaled laboratory simulations of astrophysical MHD phenomena. Astrophys. J. Suppl. Series 127, 465468.CrossRefGoogle Scholar
Shigemori, K., Kodama, R., Farley, D.R., Koase, T., Estabrook, K.G., Remington, B.A., Ryutov, D.D., Ochi, Y., Azechi, H., Stone, J. & Turner, N. (2000). Experiments on radiative collapse in laser-produced plasmas relevant to astrophysical jets. Phys. Rev. E 62, 88388841.CrossRefGoogle ScholarPubMed
Schaumann, G., Schollmeier, M.S., Rodriguez-Prieto, G., Blazeviz, A., Brambrink, E., Geissel, M., Korostiy, S., Pirzadeh, P., Roth, M., Rosmej, M.B., Faenov, A.YA., Pikuz, T.A.Tsigutkin, K., Maron, Y., Tahir, N.A. & Hoffmann, D.H.H. (2005). High energy heavy ion jets emerging from laser plasma generated by long pulse laser beams from the NHELIX laser system at GSI. Laser Part. Beams 23, 503512.CrossRefGoogle Scholar
Velarde, P., Ogando, F., Eliezer, S., Martinez-Val, J.M., Perlado, J.M. & Murakami, M. (2005). Comparison between jet collision and shell impact concepts for fast ignition. Laser Part. Beams 23, 4346.CrossRefGoogle Scholar