Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-23T04:56:28.249Z Has data issue: false hasContentIssue false

Intense heavy ion beams as a pumping source for short wavelength lasers

Published online by Cambridge University Press:  17 July 2009

A. Adonin*
Affiliation:
Johann Wolfgang Goethe-Universität, Frankfurt am Main, Germany Gesellschaft für Schwerionenforschung (GSI), Darmstadt, Germany
V. Turtikov
Affiliation:
Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia
A. Ulrich
Affiliation:
Physik Department E12, Technische Universität München (TUM), Garching, Germany
J. Jacoby
Affiliation:
Johann Wolfgang Goethe-Universität, Frankfurt am Main, Germany
D.H.H. Hoffmann
Affiliation:
Gesellschaft für Schwerionenforschung (GSI), Darmstadt, Germany Technische Universität Darmstadt (TUD), Germany
J. Wieser
Affiliation:
Coherent GmbH, München, Germany
*
Address correspondence and reprint requests to: A. Adonin, Gesellschaft für Schwerionenforschung, Planckstrasse 1, D-64291 Darmstadt, Germany. E-mail: [email protected]

Abstract

The high energy loss of heavy ions in matter as well as the small angular scattering makes heavy ion beams an excellent tool to produce almost cylindrical and homogeneously excited volumes in matter. This aspect can be used to pump short wavelength lasers. For the first time, a beam of heavy ions was used to pump a short wavelength gas laser in an experiment performed at the GSI ion accelerator facility in December 2005. In this experiment, the well-known KrF* excimer laser was pumped with an intense uranium beam. Pulses of an uranium beam compressed down to 110 ns (full width at half maximum) with initial particle energy of 250 MeV per nucleon were stopped inside a gas laser cell. A mixture of an excimer laser premix gas (95.5%Kr + 0.5%F2) and a buffer gas (Ar) in different proportions was used as the laser gas. The maximum beam intensity reached in the experiment was 2.5 × 109 particles per pulse, which resulted in 34 J/g specific energy deposited in the laser gas. The laser effect on the transition at λ = 248 nm has been successfully demonstrated by various independent methods. There, the laser threshold was reached with a beam intensity of 1.2 × 109 particles per pulse, and the energy of the laser pulse of about 2 mJ was measured for an ion beam intensity of 2 × 109 particles per pulse. As a next step, it is planned to reduce the laser wavelength down to the vacuum ultraviolet spectral region, and to proceed to the excimer lasers of the pure rare gases. The perspectives for such experiments are discussed and the detailed estimations for Xe and Kr cases are given. We believe that the use of heavy ion beams as a pumping source may lead to new pumping schemes on the higher lying level transitions and considerably shorter wavelengths, which rely on the high cross sections for multiple ionization of the target species.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adonin, A., Hoffmann, D.H.H., Jacoby, J., Kulish, M., Ni, P., Nikolaev, D., Shilkin, N., Spiller, P., Udrea, S. & Varentsov, D. (2005). Measurements of heavy ion beam profiles in gases. Plasma Physics Annual Report 2004. Darmstadt, Germany: GSI.Google Scholar
Adonin, A., Jacoby, J., Turtikov, V., Fertman, A., Golubev, A., Hoffmann, D.H.H., Ulrich, A., Varentsov, D. & Wieser, J. (2007 a). Laser effect on the 248 nm KrF transition using heavy ion beam pumping. Nucl. Instr. Meth. A 577, 357360.CrossRefGoogle Scholar
Adonin, A., Jacoby, J., Turtikov, V., Fertman, A., Golubev, A., Hoffmann, D.H.H., Ulrich, A., Varentsov, D. & Wieser, J. (2007 b). Pressure dependence of excimer emission induced by an intense uranium beam. Scientific Report 2006. Darmstadt, Germany: GSI.Google Scholar
Bergoz, J. (1991). Handbook for fast current transformer for heavy ion fusion at GSI. Technical Report. Darmstadt, Germany: GSI.Google Scholar
Brau, Ch.A. (1984). Rare gas halogen excimers. In Excimer Lasers (Rhodes, Ch. K., Ed.). New York: Springer-Verlag.Google Scholar
Eckstrom, D.J., Nakano, H.H., Lorents, C.C., Rothem, T., Betts, J.A., Lainhart, M.E., Dakin, D.A. & Maenchen, J.E. (1988). Characteristics of electron-beam-excited Xe2* at low pressures as a vacuum ultraviolet source. J. Appl. Phys. 64, 16791690.CrossRefGoogle Scholar
Forck, P. & Peters, A. (2004). Methods of beam profile measurements at high current hadron accelerators. Proc ICFA-HB 2004. Bensheim, Germany.Google Scholar
Hoffmann, D.H.H., Blazevic, A., Ni, P., Rosmej, O., Roth, M., Tahir, N.A., Tauschwitz, A., Udrea, S., Varentsov, D., Weirich, K. & Maron, Y. (2005). Present and future perspectives for high energy density physics with intense heavy ion and laser beams. Laser Part. Beams 23, 4753.CrossRefGoogle Scholar
Hutchinson, M.H.R. (1980). Excimers and excimer lasers. Appl. Phys. 21, 95114.CrossRefGoogle Scholar
Jacoby, J., Hoffmann, D.H.H., Laux, W., Müller, R.W., Wahl, H., Weyrich, K., Boggasch, E., Heimrich, B., Stöckl, C. & Wetzler, H. (1995). Stopping of Heavy Ions in a Hydrogen Plasma. Phys. Rev. Lett. 74, 15501553.CrossRefGoogle Scholar
Jacoby, J., Hoffmann, D.H.H., Müller, R.W., Mahrt-Olt, K., Arnold, R.C., Schneider, V. & Maruhn, J. (1990). Hydrodynamic motion of a heavy-ion-beam-heated plasma. Phys. Rev. Lett. 65, 20072010.CrossRefGoogle ScholarPubMed
Karelin, A.V., Sinyanskii, A.A. & Yakovlenko, S.I. (1997). Nuclear-pumped lasers and physical problems in constructing a reactor-laser. Quant. Electr. 27, 375402.Google Scholar
Keto, J.W., Gleason, R.E. Jr. & Walters, G.K. (1974). Production mechanisms and radiative lifetimes of argon and xenon molecules emitting in the ultraviolet. Phys. Rev. Lett. 33, 13651368.CrossRefGoogle Scholar
Koehler, H.A., Ferderber, L.J., Redhead, D.L. & Ebert, P.J. (1975). Vacuum-ultraviolet emission from high-pressure krypton. Phys. Rev. A 12, 968973.CrossRefGoogle Scholar
Kuehl, T., Ursescu, D., Bagnoud, V., Javorkova, D., Rosmej, O., Cassou, K., Kazamias, S., Klisnick, A., Ros, D., Nickles, P., Zielbauer, B., Dunn, J., Neumayer, P., Pert, G. & Team, P. (2007). Optimization of the non-normal incidence, transient pumped plasma X-ray laser for laser spectroscopy and plasma diagnostics at the facility for antiproton and ion research (FAIR). Laser Part. Beams 25, 9397.CrossRefGoogle Scholar
Neumayer, P., Bock, R., Borneis, S., Brambrink, E., Brand, H., Caird, J., Campbell, E.M., Gaul, E., Goette, S., Haefner, C., Hahn, T., Heuck, H.M., Hoffmann, D.H.H., Javorkova, D., Kluge, H.J., Kuehl, T., Kunzer, S., Merz, T., Onkels, E., Perry, M.D., Reemts, D., Roth, M., Samek, S., Schaumann, G., Schrader, F., Seelig, W., Tauschwitz, A., Thiel, R., Ursescu, D., Wiewior, P., Wittrock, U. & Zielbauer, B. (2005). Status of PHELIX laser and first experiments. Laser Part. Beams 23, 385389.CrossRefGoogle Scholar
Reeg, N. & Schneider, N. (2001). Current transformers for GSI's keV/u to GeV/u ion beams. DIPAC Proc. ESRF. Grenoble, France.Google Scholar
Rocca, J.J., Shlyaptsev, V., Tomasel, F.G., Cortazar, O.D., Hartshorn, D. & Chilla, J.L.A. (1994). Demonstration of a discharge pumped table-top soft-X-ray laser. Phys. Rev. Lett. 73, 21922195.CrossRefGoogle ScholarPubMed
Sakurai, T., Goto, N. & Webb, C.E. (1987). Kr2* excimer emission from multi-atmosphere discharges in Kr, Kr-He and Kr-Ne mixtures. J. Phys. D: Appl. Phys. 20, 709713.Google Scholar
Sasaki, W., Shirai, T., Kubodera, S., Kawanaka, J. & Igarashi, T. (2001). Observation of vacuum-ultraviolet Kr2* laser oscillation pumped by a compact discharge device. Opt. Lett. 26, 503505.CrossRefGoogle ScholarPubMed
Siegman, A.E. (1986). Lasers. Sausalito, CA: University Science Books.Google Scholar
Smirnov, B.M. (1983). Excimer molecules. Sov. Phys. Uspekhi 26, 3158.CrossRefGoogle Scholar
Spiller, P., Blasche, K., Blell, U., Forck, P., Klingbeil, H., Franchetti, G., Franczak, B., Omet, C., Kirk, M., Peters, A., Reich, H., Ramakers, H., Redelbach, A., Scheeler, U. & Schütt, P. (2006, Aug.). SIS18 Status Report. GSI Report 2006–1. GSI: Darmstadt, Germany.Google Scholar
Steck, M., Beckert, K., Eickhoff, H., Franzke, B., Nolden, F. & Spadtke, P. (1993). Electron cooling of heavy ions at GSI. Proc. PAC 93. Washington, DC.CrossRefGoogle Scholar
Sullivan, J.A. (1987). Design of a 100-kJ KrF power amplifier module. Fusion Techn. 11, 684704.CrossRefGoogle Scholar
Sullivan, J.A., Allen, G.R., Berggren, R.R., Czuchlewski, S.J., Harris, D.B., Jones, M.E., Krohn, B.J., Kurnit, N.A., Leland, W.T., Mansfield, C., McLeod, J., McCown, A.W., Pendergrass, J.H., Rose, E.A., Rosocha, L.A. & Thomas, V.A. (1993). KrF amplifier design issues and application to inertial confinement fusion system design. Laser Part. Beams 11, 359383.CrossRefGoogle Scholar
Tahir, N.A., Adonin, A., Deutsch, C., Fortov, V.E., Grandjouan, N., Geil, B., Grayaznov, V., Hoffmann, D.H.H., Kulish, M., Lomonosov, I.V., Mintsev, V., Ni, P., Nikolaev, D., Piriz, A.R., Shilkin, N., Spiller, P., Shutov, A., Temporal, M., Ternovoi, V., Udrea, S. & Varentsov, D. (2005). Studies of heavy ion induced high-energy-density states in matter at the GSI Darmstadt SIS-18 and future FAIR facility. Nucl. Instr. Meth. A 544, 1626.CrossRefGoogle Scholar
Tahir, N.A., Kim, V., Matvechev, A., Ostrik, A., Lomonosov, I.V., Piriz, A.R., Cela, J.J.L. & Hoffmann, D.H.H. (2007). Numerical modeling of heavy ion induced stress waves in solid targets. Laser Part. Beams 25, 523540.CrossRefGoogle Scholar
Tahir, N.A., Schmidt, R., Brugger, M., Lomonosov, I.V., Shutov, A., Piriz, A.R., Udrea, S., Hoffmann, D.H.H. & Deutsch, C. (2007). Prospects of high energy, density physics research using the CERN super proton synchrotron (SPS). Laser Part. Beams 25, 639647.CrossRefGoogle Scholar
Ulrich, A., Adonin, A., Jacoby, J., Turtikov, V., Fernengel, D., Fertman, A., Golubev, A., Hoffmann, D.H.H., Hug, A., Krücken, R., Kulish, M., Menzel, J., Morozov, A., Ni, P., Nikolaev, D.N., Shilkin, N.S., Ternovoi, V.Ya., Udrea, S., Varentsov, D. & Wieser, J. (2006 a). Excimer laser pumped by an intense, high-energy heavy-ion beam. Phys. Rev. Lett. 97, 153901.CrossRefGoogle ScholarPubMed
Ulrich, A., Adonin, A., Jacoby, J., Turtikov, V., Fernengel, D., Fertman, A., Golubev, A., Hoffmann, D.H.H., Hug, A., Krücken, R., Kulish, M., Menzel, J., Ni, P., Sharkov, B., Udrea, S., Varentsov, D., Wahl, H. & Wieser, J. (2006 b). Heavy-ion-beam pumped excimerlaser. Scientific Report 2005. GSI: Darmstadt, Germany.Google Scholar
Ulrich, A., Bohn, H., Kienle, P. & Perlow, G.J. (1983). Heavy ion beam pumped He-Ar laser. Appl. Phys. Lett. 42, 782784.CrossRefGoogle Scholar
Ulrich, A., Körner, H.J., Krötz, W., Ribitzki, G., Murnick, D.E., Matthias, E., Kienle, P. & Hoffmann, D.H.H. (1987). Heavy-ion excitation of rare-gas excimers. J. Appl. Phys. 62, 357361.CrossRefGoogle Scholar
Ulrich, A., Wieser, J., Brunnhuber, A. & Krötz, W. (1994). Heavy ion beam pumped visible laser. Appl. Phys. Lett. 64, 19021904.CrossRefGoogle Scholar
Varentsov, D., Adonin, A., Fortov, V.E., Gryaznov, V.K., Hoffmann, D.H.H., Kulish, M., Lomonosov, I., Mintsev, V., Ni, P., Nikolaev, D., Shilkin, N., Shutov, A., Spiller, P., Tahir, N.A., Ternovoi, V. & Udrea, S. (2004). Report on December 2003 beamtime experiment at HHT: Near-critical HED states of lead generated by intense uranium beam. Scientific Report 2003. GSI: Darmstadt, Germany.Google Scholar
Wagner, T., Eberl, E., Frank, K., Hartmann, W., Hoffmann, D.H.H. & Tkotz, R. (1996). XUV amplification in a recombining z-pinch plasma. Phys. Rev. Lett. 76, 31243127.CrossRefGoogle Scholar
Young, R.J. De (1981). Kilowatt multiple-path 3He-Ar nuclear-pumped laser. Appl. Phys. Lett. 38, 297298.Google Scholar
Ziegler, J.F., Biersack, J.P. & Littmark, U. (2003). Full description of the SRIM2003 code in the tutorial book. In The Stopping and Range of Ions in Solids. New York: Pergamon Press.Google Scholar
Zvorykin, V.D., Berthe, L., Boustie, M., Levchenko, A.O. & Ustinovskii, N.N. (2008). Planar shock waves in liquids produced by high-energy KrF laser: A technique for studying hydrodynamic instabilities. Laser Part. Beams 6, 461471.CrossRefGoogle Scholar
Zvorykin, V.D., Didenko, N.V., Ionin, A.A., Kholin, I.V., Konyashchenko, A.V., Krokhin, O.N., Levchenko, A.O., Mavritskii, A.O., Mesyats, G.A., Molchanov, A.G., Rogulev, M.A., Seleznev, L.V., Sinitsyn, D.V., Tenyakov, S.Y., Ustinovskii, N.N. & Zayarnyi, D.A. (2007). GARPUN-MTW: A hybrid Ti:Sapphire/KrF laser facility for simultaneous amplification of subpicosecond/nanosecond pulses relevant to fast-ignition ICF concept. Laser Part. Beams 25, 435451.CrossRefGoogle Scholar