Article contents
Injection and induction acceleration of Ar3+ in the KEK Digital Accelerator
Published online by Cambridge University Press: 24 March 2015
Abstract
Four microseconds long Ar3+ beam with injection energy of 15 keV/u has been injected into the Digital Accelerator of the High-Energy Accelerator Research Organization. Beam production, transportation, and injection are described as well as machine properties. Results of a free running experiment under static magnetic field and longitudinal confinement and acceleration under a fast ramping magnetic field are presented in detail with a brief discussion on the beam lifetime.
- Type
- Research Article
- Information
- Copyright
- Copyright © Cambridge University Press 2015
References
REFERENCES
Adachi, T., Arai, T., Leo, K.W., Takayama, K. & Tokuchi, A. (2011). A solid-state Marx generator driven Einzel lens chopper. Rev. Sci. Instrum. 82, 083305.CrossRefGoogle ScholarPubMed
Adachi, T. & Kawakubo, T. (2013). Electrostatic injection kicker for the KEK digital accelerator. Phys. Rev. Spec. Top. – Accel. Beams 16, 053501.CrossRefGoogle Scholar
Bangerter, R.O. (1993). The induction approach to heavy-ion inertial fusion: accelerator and target considerations. Nuovo Cim. A 106, 1445–1456.CrossRefGoogle Scholar
Dixit, T.S., Iwashita, T. & Takayama, K. (2009). Induction acceleration scenario from an extremely low energy in the KEK all-ion accelerator. Nucl. Instrum. Methods Phys. Res. A, Accel. Spectrom. Detect. Assoc. Equip. 602, 326–336.CrossRefGoogle Scholar
Friedman, A., Barnard, J.J., Cohen, R.H., Grote, D.P., Lund, S.M., Sharp, W.M., Faltens, A., Henestroza, E., Jung, J.-Y., Kwan, J.W., Lee, E.P., Leitner, M.A., Logan, B.G., Vay, J.L., Waldron, W.L., Davidson, R.C., Dorf, M., Gilson, E.P. & Kaganovich, I.D. (2010). Beam dynamics of the Neutralized Drift Compression Experiment-II, a novel pulse-compressing ion accelerator. Phys. Plasmas 17, 056704.CrossRefGoogle Scholar
Hofmann, I. (1998). HIDIF – an approach to high repetition rate inertial fusion with heavy ions. Nucl. Instrum. Methods Phys. Res. Sect. A, Accel. Spectrom. Detect. Assoc. Equip. 415, 11–19.CrossRefGoogle Scholar
Iwashita, T., Adachi, T., Takayama, K., Leo, K.W., Arai, T., Arakida, Y., Hashimoto, M., Kadokura, E., Kawai, M., Kawakubo, T., Kubo, T., Koyama, K., Nakanishi, H., Okazaki, K., Okamura, K., Someya, H., Takagi, A., Tokuchi, A. & Wake, M. (2011). KEK digital accelerator. Phys. Rev. Spec. Top. – Accel. Beams 14, 071301.CrossRefGoogle Scholar
Leo, K., Adachi, T., Arai, T. & Takayama, K. (2013). Einzel lens chopper and behavior of the chopped beam in the KEK digital accelerator. Phys. Rev. Spec. Top. – Accel. Beams 16, 043502.CrossRefGoogle Scholar
Liu, X., Takayama, K., Adachi, T. & Harada, S. (2011). Simulation analysis of barrier bucket trapped ion bunch squeezing experiment. Presented at the Recent Progress in Induction Accelerator. Chengdu.Google Scholar
Munemoto, N., Takayama, K., Takano, S., Okamura, M. & Kumaki, M. (2014). Development of the C(6+) laser ablation ion source for the KEK digital accelerator. Rev. Sci. Instrum. 85, 02B922.CrossRefGoogle Scholar
Takayama, K., Arakida, Y., Iwashita, T., Shimosaki, Y., Dixit, T. & Torikai, K. (2007). All-ion accelerators: An injector-free synchrotron. J. Appl. Phys. 101, 063304.CrossRefGoogle Scholar
Takayama, K. & Kishiro, J. (2000). Induction synchrotron. Nucl. Instrum. Methods Phys. Res. Sect. A, Accel. Spectrom. Detect. Assoc. Equip. 451, 304–317.CrossRefGoogle Scholar
Takayama, K., Yoshimoto, T., Barata, M., Wah, L.K., Xingguang, L., Iwashita, T., Harada, S., Adachi, T., Arai, T., Arakawa, D., Asao, H., Kadokura, E., Kawakubo, T., Nakanishi, H., Okada, Y., Okamura, K., Okazaki, K., Takagi, A., Takano, S. & Wake, M. (2014). Induction acceleration of heavy ions in the KEK digital accelerator: Demonstration of a fast-cycling induction synchrotron. Phys. Rev. Spec. Top. Accel. Beams 17, 010101.CrossRefGoogle Scholar
Wake, M., Arakida, Y., Koseki, K., Shimosaki, Y., Takayama, K., Torikai, K., Jiang, W., Nakahiro, K., Tokuchi, A. & Sugiyama, A. (2007). Switching power supply for induction accelerators. 2007 IEEE Particle Accelator Conf. 251–253.CrossRefGoogle Scholar
Waldron, W.L., Abraham, W.J., Arbelaez, D., Friedman, A., Galvin, J.E., Gilson, E.P., Greenway, W.G., Grote, D.P., Jung, J.-Y., Kwan, J.W., Leitner, M., Lidia, S.M., Lipton, T.M., Reginato, L.L., Regis, M.J., Roy, P.K., Sharp, W.M., Stettler, M.W., Takakuwa, J.H., Volmering, J. & Vytla, V.K. (2014). The NDCX-II engineering design. Nucl. Instrum. Methods Phys. Res. Sect. A, Accel. Spectrom. Detect. Assoc. Equip. 733, 226–232.CrossRefGoogle Scholar
Yoshimoto, T., Barata, M., Iwashita, T., Harada, S., Arakawa, D., Arai, T., Liu, X., Adachi, T., Asao, H., Kadokura, E., Kawakubo, T., Kubo, T., Leo, K.W., Nakanishi, H., Okada, Y., Okamura, K., Okazaki, K., Someya, H., Takayama, K. & Wake, M. (2014). Heavy ion beam acceleration in the KEK digital accelerator: Induction acceleration from 200 keV to a few tens of MeV. Nucl. Instrum. Methods Phys. Res. Sect. A, Accel. Spectrom. Detect. Assoc. Equip. 733, 141–146.CrossRefGoogle Scholar
- 1
- Cited by