Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-26T07:05:56.192Z Has data issue: false hasContentIssue false

Improved yield and control of spectra from high-intensity laser-generated neutron beams

Published online by Cambridge University Press:  09 January 2018

Brian J. Albright*
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
Lin Yin
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
Andrea Favalli
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
*
Author for correspondence: Brian J. Albright, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA. E-mail: [email protected]

Abstract

Kinetic modeling of laser-ion beam generation from the “break-out afterburner” (BOA) has been modeled for several deuteron-rich solid-density target foils. Modeling the transport of these beams in a beryllium converter shows as much as a fourfold increase in neutron yield over the present state of the art through the use of alternative target materials. Additionally, species-separation dynamics during the BOA can be exploited to control the hardness of the neutron spectra, of interest for, for example, enhancing penetrability in shielded material in active neutron interrogation settings.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alvarez, J, Fernández-Tobias, J, Mima, K, Nakai, S, Kar, S, Kato, Y and Perlado, JM (2014) Laser driven neutron sources: characteristics, applications and prospects. Physics Procedia 60, 2938.Google Scholar
Bang, W, Barbui, M, Bonasera, A, Dyer, G, Quevedo, HJ, Hagel, K, Schmidt, K, Consoli, F, De Angelis, R, Andreoli, P, Gaul, E, Bernstein, AC, Donovan, M, Barbarino, M, Kimura, S, Mazzocco, M, Sura, J, Natowitz, JB and Ditmire, T (2013) Temperature measurements of fusion plasmas produced by petawatt-laser-irradiated D23He or CD43He clustering gases. Physical Review Letters 111, 055002.Google Scholar
Batha, SH, Aragonez, R, Archuleta, FL, Archuleta, TN, Benage, JF, Cobble, JA, Cowan, JS, Fatherley, VE, Flippo, KA, Gautier, DC, Gonzales, RP, Greenfield, SR, Hegelich, BM, Hurry, TR, Johnson, RP, Kline, JL, Letzring, SA, Loomis, EN, Lopez, FE, Luo, SN, Montgomery, DS, Oertel, JA, Paisley, DL, Reid, SM, Sanchez, PG, Seifter, A, Shimada, T and Workman, JB (2008) TRIDENT high-energy-density facility experimental capabilities and diagnostics. The Review of Scientific Instruments 79(10), 10F305.Google Scholar
Bowers, KJ, Albright, BJ, Yin, L, Bergen, B and Kwan, TJT (2008 a) Ultrahigh performance three-dimensional electromagnetic relativistic kinetic plasma simulation). Physics of Plasmas 15(5), 055703.Google Scholar
Bowers, KJ, Albright, BJ, Bergen, B, Yin, L, Barker, KJ and Kerbyson, DJ (2008 b) 0.374 Pflop/s trillion-particle kinetic modeling of laser plasma interaction on Roadrunner. In Proceedings of the 2008 ACM/IEEE Conference on Supercomputing. IEEE Press, pp. 6374.Google Scholar
Bowers, KJ, Albright, BJ, Yin, L, Daughton, W, Roytershteyn, V, Bergen, B and Kwan, TJT (2009) Advances in petascale kinetic plasma simulation with VPIC and Roadrunner. Journal of Physics: Conference Series 180(1), 012055.Google Scholar
Buffler, A (2004) Contraband detection with fast neutrons. Radiation Physics and Chemistry 71, 853861.Google Scholar
Chadwick, MB, Herman, M, Obložinský, P, Herman, M, Greene, NM, McKnight, RD, Smith, DL, Young, PG, MacFarlane, RE, Hale, GM, Frankle, SC, Kahler, AC, Kawano, T, Little, RC, Madland, DG, Moller, P, Mosteller, RD, Page, PR, Talou, P, Trellue, H, White, MC, Wilson, WB, Arcilla, R, Dunford, CL, Mughabghab, SF, Pritychenko, B, Rochman, D, Sonzogni, AA, Lubitz, CR, Trumbull, TH, Weinman, JP, Brown, DA, Cullen, DE, Heinrichs, DP, McNabb, DP, Derrien, H, Dunn, ME, Larson, NM, Leal, LC, Carlson, AD, Block, RC, Briggs, JB, Cheng, ET, Huria, HC, Zerkle, ML, Kozier, KS, Courcelle, A, Pronyaev, V and van der Marck, SC (2006) Evaluated nuclear data file ENDF/B-VII.0ENDF/B-VII.0: next generation evaluated nuclear data library for nuclear science and technology. Nuclear Data Sheets 107(12), 29313060.Google Scholar
Chadwick, MB, Herman, M, Obložinský, P, Dunn, ME, Danon, Y, Kahler, AC, Smith, DL, Pritychenko, B, Arbanas, G, Arcilla, R, Brewer, R, Brown, DA, Capote, R, Carlson, AD, Cho, YS, Derrien, H, Guber, K, Hale, GM, Hoblit, S, Holloway, S, Johnson, TD, Kawano, T, Kiedrowski, BC, Kim, H, Kunieda, S, Larson, NM, Leal, L, Lestone, JP, Little, RC, McCutchan, EA, MacFarlane, RE, MacInnes, M, Mattoon, CM, McKnight, RD, Mughabghab, SF, Nobre, GPA, Palmiotti, G, Palumbo, A, Pigni, MT, Pronyaev, VG, Sayer, RO, Sonzogni, AA, Summers, NC, Talou, P, Thompson, IJ, Trkov, A, Vogt, RL, van der Marck, SC, Wallner, A, White, MC, Wiarda, D and Young, PG (2011) Special issue on ENDF/B-VII.1 LibraryENDF/B-VII.1 nuclear data for science and technology: cross sections, covariances, fission product yields and decay data. Nuclear Data Sheets 112(12), 28872996.Google Scholar
Davis, J and Petrov, GM (2008) Angular distribution of neutrons from high-intensity laser–target interactions. Plasma Physics and Controlled Fusion 50(6), 065016.CrossRefGoogle Scholar
Davis, J, Petrov, GM, Petrova, T, Willingale, L, Maksimchuk, A and Krushelnick, K (2010) Neutron production from 7Li(d, xn) nuclear fusion reactions driven by high-intensity laser-target interactions. Plasma Physics and Controlled Fusion 52(4), 045015.Google Scholar
Favalli, A, Mehner, HC, Crochemore, JM and Pedersen, B (2009) Pulsed neutron facility for research in illicit trafficking and nuclear safeguards. IEEE Transactions on Nuclear Science 56(3), 12921296.Google Scholar
Favalli, A, Aymond, F, Bridgewater, JS, Croft, S, Deppert, O, Devlin, MJ, Falk, K, Fernández, JC, Gautier, DC, Gonzales, MA, Goodsell, AV, Guler, N, Hamilton, CE, Hegelich, BM, Henzlova, D, Ianakiev, KD, Iliev, M, Johnson, RP, Jung, D, Kleinschmidt, A, Koehler, KE, Pomerantz, I, Roth, M, Santi, PA, Shimada, T, Swinhoe, MT, Taddeucci, TN, Wurden, GA, Palaniyappan, S and McCary, E (2014) Nuclear material detection by one-short-pulse-laser-driven neutron source. In IEEE Nuclear Symposium, Seattle, USA.Google Scholar
Favalli, A, Bridgwater, J, Croft, S, Falk, K, Fernández, JC, Gautier, D, Guler, N, Hamilton, C, Henzlova, D, Ianakiev, KD, Iliev, M, Johnson, RP, Jung, D, Roth, M, Shimada, T and Swinhoe, M (2016 a) Laser-driven neutron source for detection of nuclear material. In Proceedings of the 2016 Advances in Nuclear Nonproliferation Technology and Policy Conference, Santa Fe, NM, USA, 25–30 Sept.Google Scholar
Favalli, A, Guler, N, Henzlova, D, Falk, K, Croft, S, Gautier, DC, Ianakiev, K, Iliev, M, Palaniyappan, S, Roth, M, Fernández, J and Swinhoe, M (2016 b) Experimental observation of β-delayed neutrons from 9Li as a way to study short-pulse laser-driven deuteron production. arXiv:1605.05702v1 [physics.plasm-ph].Google Scholar
Hatchett, SP, Brown, CG, Cowan, TE, Henry, EA, Johnson, JS, Key, MH, Koch, JA, Langdon, AB, Lasinski, BF, Lee, RW, Jackinnon, AJ, Pennington, DM, Perry, MD, Phillips, TW, Roth, M, Sangster, TC, Singh, MS, Snavely, RA, Stoyer, MA, Wilks, SC and Yasuike, K (2000) Electron, photon, and ion beams from the relativistic interaction of petawatt laser pulses with solid targets. Physics of Plasmas 7(5), 20762082.Google Scholar
Hegelich, BM, Albright, BJ, Cobble, J, Flippo, K, Letzring, S, Paffett, M, Ruhl, H, Schreiber, J, Schulze, RK and Fernández, JC (2006) Laser acceleration of quasi-monoenergetic MeV ion beams. Nature 439(7075), 441444.Google Scholar
Hegelich, BM, Jung, D, Albright, BJ, Cheung, M, Dromey, B, Gautier, DC, Hamilton, C, Letzring, S, Munchhausen, R, Palaniyappan, S, Shah, R, Wu, H-C, Yin, L and Fernández, JC (2013) 160 MeV laser-accelerated protons from CH2 nano-targets for proton cancer therapy. arXiv:1310.8650 [physics.plasm-ph].Google Scholar
Hegelich, M, Karsch, S, Pretzler, G, Habs, D, Witte, K, Guenther, W, Allen, M, Blazevic, A, Fuchs, J, Gauthier, JC, Geissel, M, Audebert, P, Cowan, T and Roth, M (2002) MeV ion jets from short-pulse-laser interaction with thin foils. Physical Review Letters 89(8), 085002.Google Scholar
Henig, A, Kiefer, D, Markey, K, Gautier, DC, Flippo, KA, Letzring, S, Johnson, RP, Shimada, T, Yin, L, Albright, BJ, Bowers, KJ, Fernández, JC, Rykovanov, SG, Wu, H-C, Zepf, M, Jung, D, Liechtenstein, VK, Schreiber, J, Habs, D and Hegelich, BM (2009) Enhanced laser-driven ion acceleration in the relativistic transparency regime. Physical Review Letters 103(4), 045002.Google Scholar
Higginson, DP, McNaney, JM, Swift, DC, Bartal, T, Hey, DS, Kodama, R, Le Pape, S, Mackinnon, A, Mariscal, D, Nakamura, H, Nakanii, N, Tanaka, KA and Beg, FN (2010) Laser generated neutron source for neutron resonance spectroscopy. Physics of Plasmas 17, 100701.Google Scholar
Higginson, DP, McNaney, JM, Swift, DC, Petrov, GM, Davis, J, Frenje, JA, Jarrott, LC, Kodama, R, Lancaster, KL, Mackinnon, AJ, Nakamura, H, Patel, PK, Tynan, G and Beg, FN (2011) Production of neutrons up to 18 MeV in high-intensity, short-pulse laser matter interactions. Physics of Plasmas 18(10), 100703.Google Scholar
Izumi, N, Sentoku, Y, Habara, H, Takahashi, K, Ohtani, F, Sonomoto, T, Kodama, R, Norimatsu, T, Fujita, H, Kitagawa, Y, Mima, K, Tanaka, KA, Yamanaka, T (2002) Observation of neutron spectrum produced by fast deuterons via ultraintense laser plasma interactions. Physical Review E 65, 036413.Google Scholar
Jung, D, Falk, K, Guler, N, Deppert, O, Devlin, M, Favalli, A, Fernández, JC, Gautier, DC, Geissel, M, Haight, R, Hamilton, CE, Hegelich, BM, Johnson, RP, Merrill, F, Schaumann, G, Schoenberg, K, Schollmeier, M, Shimada, T, Taddeucci, T, Tybo, JL, Wender, SA, Wilde, CH, Wurden, GA and Roth, M (2013 a) Characterization of a novel, short pulse laser-driven neutron source. Physics of Plasmas 20(5), 056706.Google Scholar
Jung, D, Yin, L, Albright, BJ, Gautier, DC, Letzring, S, Dromey, B, Yeung, M, Hörlein, R, Shah, R, Palaniyappan, S, Allinger, K, Schreiber, J, Bowers, KJ, Wu, H-C, Fernández, JC, Habs, D and Hegelich, BM (2013 b) Efficient carbon ion beam generation from laser-driven volume acceleration. New Journal of Physics 15(2), 023007.Google Scholar
Jung, D, Yin, L, Gautier, DC, Wu, HC, Letzring, S, Dromey, B, Shah, R, Palaniyappan, S, Shimada, T, Johnson, RP, Schreiber, J, Habs, D, Fernández, JC, Hegelich, BM and Albright, BJ (2013 c) Laser-driven 1 GeV carbon ions from preheated diamond targets in the break-out afterburner regime. Physics of Plasmas 20(8), 083103.Google Scholar
Jung, D, Albright, BJ, Yin, L, Gautier, DC, Dromey, B, Shah, R, Palaniyappan, S, Letzring, S, Wu, H-C, Shimada, T, Johnson, RP, Habs, D, Roth, M, Fernández, JC and Hegelich, BM (2015 a) Scaling of ion energies in the relativistic-induced transparency regime. Laser and Particle Beams 33(4), 695703.Google Scholar
Jung, D, Senje, L, McCormack, O, Yin, L, Albright, BJ, Letzring, S, Gautier, DC, Dromey, B, Toncian, T, Fernández, JC, Zeph, M and Hegelich, BM (2015 b) On the analysis of inhomogeneous magnetic field spectrometer for laser-driven ion acceleration. Review of Scientific Instruments 86(3), 033303.Google Scholar
Karsch, S, Düsterer, S, Schwoerer, H, Ewald, F, Habs, D, Hegelich, M, Pretzler, G, Pukhov, A, Witte, K and Sauerbrey, R (2003) High-intensity laser induced ion acceleration from heavy-water droplets. Physical Review Letters 91, 015001.Google Scholar
Lancaster, KL, Karsch, S, Habara, H, Beg, FN, Clark, EL, Freeman, R, Key, MH, King, JA, Kodama, R, Krushelnick, K, Ledingham, KWD, McKenna, P, Murphy, CD, Norreys, PA, Stephens, R, Stöeckl, C, Yotama, Y, Wei, MS and Zeph, M (2004) Characterization of 7Li(p, n)7Be neutron yields from laser produced ion beams for fast neutron radiography. Physics of Plasmas 11, 34043408.Google Scholar
Ma, J, Delaire, O, May, AF, Carlton, CE, McGuire, MA, VanBebber, LH, Abernathy, DL, Ehlers, G, Hong, T, Huq, A, Tian, W, Keppens, VM, Shao-Horn, Y and Sales, BC (2013) Glass-like phonon scattering from a spontaneous nanostructure in AgSbTe2. Nature Nanotechnology 8, 445451.Google Scholar
Maksimchuk, A, Gu, S, Flippo, K, Umstadter, D and Bychenkov, VY (2000) Forward ion acceleration in thin films driven by a high-intensity laser. Physical Review Letters 84(18), 41084112.Google Scholar
Mashnik, SG, Baznat, MI, Gudima, KK, Sierk, AJ and Prael, RE (2005) CEM03 and LAQGSM03: extension of the CEM2k+ GEM2 and LAQGSM codes to describe photo-nuclear reactions at intermediate energies (30 MeV to 1.5 GeV). Journal of Nuclear and Radiochemical Sciences 6(2), A1A19.Google Scholar
Palaniyappan, S, Hegelich, BM, Wu, HC, Jung, D, Gautier, DC, Yin, L, Albright, BJ, Johnson, RP, Shimada, T, Letzring, S, Offermann, DT, Ren, J, Huang, C-K, Hörlein, R, Dromey, B, Fernández, JC and Shah, RC (2012) Dynamics of relativistic transparency and optical shuttering in expanding overdense plasmas. Nature Physics 8(10), 763769.Google Scholar
Perkins, LJ, Logan, BG, Rosen, MD, Perry, MD, Diaz de la Rubia, T, Ghoniem, NM, Ditmire, T, Springer, PT and Wilks, SC (2000) The investigation of high intensity laser driven micro neutron sources for fusion materials research at high fluence. Nuclear Fusion 40, 119.Google Scholar
Robinson, AL, Bell, AR and Kingham, RJ (2006) Effect of target composition on proton energy spectra in ultraintense laser-solid interactions. Physical Review Letters 96(3), 035005.Google Scholar
Roth, M, Blazevic, A, Geissel, M, Schlegel, T, Cowan, TE, Allen, M, Gauthier, J-C, Audebert, P, Fuchs, J, Meyer-ter-Vehn, J, Hegelich, M, Karsch, S and Pukhov, A (2002) Energetic ions generated by laser pulses: a detailed study on target properties. Physical Review Special Topics – Accelerators and Beams 5(6), 061002.Google Scholar
Roth, M, Jung, D, Falk, K, Guler, N, Deppert, O, Devlin, M, Favalli, A, Fernández, JC, Gautier, D, Geissel, M, Haight, R, Hamilton, CE, Hegelich, BM, Johnson, RP, Merrill, F, Schaumann, G, Schoenberg, K, Schollmeier, M, Shimada, T, Taddeucci, T, Tybo, JL, Wagner, F, Wender, SA, Wilde, CJ and Wurden, GA (2013) Bright laser-driven neutron source based on the relativistic transparency of solids. Physical Review Letters 110(4), 044802.Google Scholar
Roth, M, Jung, D, Falk, K, Guler, N, Deppert, O, Devlin, M, Favalli, A, Fernández, JC, Gautier, DC, Geissel, M, Haight, R, Hamilton, CE, Hegelich, BM, Johnson, RP, Kleinschmidt, A, Merrill, F, Schaumann, G, Schoenberg, K, Schollmeier, M, Shimada, T, Taddeucci, T, Tybo, JL, Wagner, F, Wender, SA, Wilde, CJ and Wurden, GA (2016) A bright neutron source driven by relativistic transparency of solids. Journal of Physics: Conference Series 688, 012094.Google Scholar
Serber, R (1947) The production of high energy neutrons by stripping. Physical Review 72, 10081016.Google Scholar
Shah, RC, Johnson, RP, Shimada, T, Flippo, KA, Fernández, JC and Hegelich, BM (2009) High-temporal contrast using low-gain optical parametric amplification. Optics letters 34(15), 22732275.Google Scholar
Snavely, RA, Key, MH, Hatchett, SP, Cowan, TE, Roth, M, Phillips, TW, Stoyer, MA, Henry, EA, Sangster, TC, Singh, MS, Wilks, SC, MacKinnon, A, Offenberger, A, Pennington, DM, Yasuike, K, Langdon, AB, Lasinski, BF, Johnson, J, Perry, MD and Campbell, EM (2000) Intense high-energy proton beams from petawatt-laser irradiation of solids. Physical Review Letters 85(14), 29452949.Google Scholar
Stark, DJ, Yin, L, Albright, BJ and Guo, F (2017) Effects of dimensionality on kinetic simulations of laser-ion acceleration in the transparency regime. Physics of Plasmas 24(5), 053103.Google Scholar
Toupin, C, Lefebvre, E and Bonnaud, G (2001) Neutron emission from a deuterated solid target irradiated by an ultraintense laser pulse. Physics of Plasmas 8(3), 10111021.Google Scholar
Werner, CJ (2017) MCNP Users Manual - Code Version 6.2, LA-UR-17-29981. Los Alamos, NM: Los Alamos National Laboratory.Google Scholar
Yin, L, Albright, BJ, Hegelich, BM and Fernández, JC (2006) GeV laser ion acceleration from ultrathin targets: the laser break-out afterburner. Laser and Particle Beams 24(2), 291298.Google Scholar
Yin, L, Albright, BJ, Hegelich, BM, Bowers, KJ, Flippo, KA, Kwan, TJT and Fernández, JC (2007) Monoenergetic and GeV ion acceleration from the laser breakout afterburner using ultrathin targets. Physics of Plasmas 14(5), 056706.Google Scholar
Zaccai, G (2000) How soft is a protein? A protein dynamics force constant measured by neutron scattering. Science 288, 16041607.Google Scholar
Ziegler, JF, Ziegler, MD and Biersack, JP (2010) SRIM – the stopping and range of ions in matter (2010). Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 268(11), 18181823.Google Scholar