Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-10T22:45:55.433Z Has data issue: false hasContentIssue false

Improved two-temperature model and its application in femtosecond laser ablation of metal target

Published online by Cambridge University Press:  14 April 2010

Ranran Fang*
Affiliation:
College of Mathematics and Physics, Chongqing University of Posts and Telecommunications, Chongqing, China
Duanming Zhang
Affiliation:
School of Physics, Huazhong University of Science and Technology, Wuhan, China
Hua Wei
Affiliation:
Center for Modern Physics and Department of Physics, Chongqing University, Chongqing, China
Zhihua Li
Affiliation:
School of Physics, Huazhong University of Science and Technology, Wuhan, China
Fengxia Yang
Affiliation:
School of Physics, Huazhong University of Science and Technology, Wuhan, China
Yihua Gao
Affiliation:
School of Physics, Huazhong University of Science and Technology, Wuhan, China
*
Address correspondence and reprint requests to: Ranran Fang, College of Mathematics and Physics, Chongqing University of Posts and Telecommunications, Chongqing 400065, China. E-mail: [email protected]

Abstract

An improved two-temperature model to describe femtosecond laser ablation of metal target was presented. The temperature-dependent heat capacity and thermal conductivity of the electron, as well as electron temperature-dependent absorption coefficient and absorptivity are all considered in this two-temperature model. The tailored two-temperature model is solved using a finite difference method for copper target. The time-dependence of lattice and electron temperature of the surface for different laser fluence are performed, respectively. The temperature distribution of the electron and lattice along with space and time for a certain laser fluence is also presented. Moreover, the variation of ablation rate per pulse with laser fluence is obtained. The satisfactory agreement between our numerical results and experimental data indicates that the temperature dependence of heat capacity, thermal conductivity, absorption coefficient and absorptivity in femtosecond laser ablation of metal target must not be neglected. The present model will be helpful for the further experimental investigation of application of the femtosecond laser.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Amoruso, S., Ausanio, G., Bruzzese, R., Gragnaniello, L., Lanotte, L., Vitiello, M. & Wang, X. (2006). Characterization of laser ablation of solid targets with near-infrared laser pulses of 100 fs and 1 ps duration. Appl. Surf. Sci. 252, 4863–4870.CrossRefGoogle Scholar
Andrea, P., Antonio, M. & Roger, K. (1994). Laser-pulse sputtering of aluminum: Vaporization, boiling, superheating, and gas-dynamic effects. Phys. Rev. E 50, 47164727.Google Scholar
Anisimov, S.I., Kapeliovich, B.L. & Perelman, T.L. (1974). Electron emission from metal surfaces exposed to ultra short laser pulses. Sov. Phys. JETP 39, 375377.Google Scholar
Arun, I., Wu, X.D., Venkatesan, T., Ogale, S.B., Chang, C.C. & Dijkkamp, D. (1987). Pulsed laser etching of high Tc superconducting films. Appl. Phys. Lett. 51, 11121114.Google Scholar
Bashir, S., Rafique, M.S. & Ul-Haq, F. (2007). Laser ablation of ion irradiated CR-39. Laser Part. Beams 25, 181191.CrossRefGoogle Scholar
Billings, B.H. & Frederikse, H.P.R. (1972). American Institute of Physics Handbook. New York: McGraw-Hill.Google Scholar
Brorson, S.D., Kazeroonian, A., Moodera, J.S., Face, D.W., Cheng, T.K., Ippen, E.P., Dresselhaus, M.S. & Dresselhaus, G. (1990). Femtosecond room-temperature measurement of the electron-phonon coupling constant Y in metallic superconductors. Phys. Rev. Lett. 64, 21722175.CrossRefGoogle Scholar
Eesley, G.L. (1986). Generation of nonequilibrium electron and lattice temperatures in copper by picosecond laser pulses. Phys. Rev. B 33, 21442150.CrossRefGoogle ScholarPubMed
Elsayed-Ali, H.E., Norris, T.B., Pessot, M.A. & Mourou, G.A. (1987). Time-resolved observation of electron-phonon relaxation in copper. Phys. Rev. Lett. 58, 12121213.CrossRefGoogle ScholarPubMed
Fann, W.S., Storz, R., Tom, H.K. & Bokor, J. (1992). Electron thermalization in gold. Phys. Rev. B 46, 1359213595.CrossRefGoogle ScholarPubMed
Fisher, D., Fraenkel, M., Zinamon, Z., Henis, Z., Moshe, E., Horovitz, Y., Luzon, E., Maman, S. & Eliezer, S. (2005). Intraband and interband absorption of femtosecond laser pulses in copper. Laser Part. Beams 23, 391393.CrossRefGoogle Scholar
Fisher, D., Fraenkel, M., Henis, Z., Moshe, E. & Eliezer, S. (2001). Interband and intraband (Drude) contributions to femtosecond laser absorption in Aluminum. Phys. Rev. E 65, 016409.CrossRefGoogle ScholarPubMed
Fujimoto, J.G., Liu, J.M., Ippen, E.P. & Bloembergen, N. (1984). Femtosecond laser interaction with metallic tungsten and nonequilibrium electron and lattice temperatures. Phys. Rev. Lett. 53, 18371840.CrossRefGoogle Scholar
Gamaly, E.G., Luther-Davies, B., Kolev, V.Z., Madsen, N.R., Duering, M. & Rode, A.V. (2005). Ablation of metals with picosecond laser pulses: Evidence of long-lived non-equilibrium surface states. Laser Part. Beams 23, 167176.CrossRefGoogle Scholar
Guo, S. (1997). Electric Dynamic, New York: Higher Education Publishing Company.Google Scholar
Hertel, T., Knoesel, E., Wolf, M. & Ertl, G. (1996). Ultrafast electron dynamics at Cu(111): Response of an electron gas to optical excitation. Phys. Rev. Lett. 76, 535538.CrossRefGoogle ScholarPubMed
Hirayama, Y. & Obara, M. (2005). Heat-affected zone and ablation rate of copper ablated with femtosecond laser. J. Appl. Phys. 97, 064903/1–6.CrossRefGoogle Scholar
Lam, Y.C., Tran, D.V. & Zheng, H.Y. (2007). A study of substrate temperature distribution during ultrashort laser ablation of bulk copper. Laser Part. Beams 25, 155159.CrossRefGoogle Scholar
Mirdan, B.M., Jawad, H.A., Batani, D., Conte, V., Desai, T. & Jafer, R. (2009). Surface morphology modifications of human teeth induced by a picosecond Nd:YAG laser operating at 532 nm. Laser Part. Beams 27, 103108.CrossRefGoogle Scholar
Anwar, Muhammad Shahbaz, Latif, Anwar, Iqbal, M., Shahid Rafique, M., Khaleeq-Ur-Rahman, M. & Siddique, Sofia. (2006). Theoretical model for heat conduction in metals during interaction with ultra short laser pulse. Laser Part. Beams 24, 347353.CrossRefGoogle Scholar
Ozaki, T., Bom, L.E. & Ganeev, R.A. (2008). Extending the capabilities of ablation harmonies to shorter wavelengths and higher intensity. Laser Part. Beams 26, 235240.CrossRefGoogle Scholar
Ozaki, T., Bom, L.B.E., Ganeev, R., Kieffer, J.C., Suzuki, M. & Kuroda, H. (2007). Intense harmonic generation from silver ablation. Laser Part. Beams 25, 321325.CrossRefGoogle Scholar
Schafer, C., Urbassek, H.M. & Zhigilei, L.V. (2002). Metal ablation by picosecond laser pulses: A hybrid simulation. Phys. Rev. B 66, 115404-11154404-8.CrossRefGoogle Scholar
Sun, C.K., Vallee, F., Acioli, L., Ippen, E.P. & Fujimoto, J.G. (1993). Femtosecond investigation of electron thermalization in gold. Phys. Rev. B 48, 1236512368.CrossRefGoogle ScholarPubMed
Sun, C.K., Vallee, F., Acioli, L., Ippen, E.P. & Fujimoto, J.G. (1994). Femtosecond-tunable measurement of electron thermalization in gold. Phys. Rev. B 50, 15337–15348.CrossRefGoogle ScholarPubMed
Sun, C.W. (2002). The Effect of Laser Irradiation. Beijing: National Defence Industry Press.Google Scholar
Trtica, M.S., Radak, B.B., Gakovic, B.M., Milovanovic, D.S., Batani, D. & Desai, T. (2009). Surface modifications of Ti6A14V by a picosecond Nd:YAG laser. Laser Part. Beams 25, 321325.Google Scholar
Vorobyev, A.Y. & Guo, C.L. (2005). Enhanced absorptance of gold following multipulse femtosecond laser ablation. Phys. Rev. B 72, 195422.CrossRefGoogle Scholar
Wang, X.Y., Riffe, D.M., Lee, Y.S. & Downer, M.C. (1994). Time-resolved electron-temperature measurement in a highly excited gold target using femtosecond thermionic emission. Phys. Rev. B 50, 8016–8019.Google Scholar
Zhang, D.M., Li, L., Li, Z.H., Guan, L., Hou, S.P. & Tan, X.Y. (2005). Variation of the target absorptance and target temperature distribution before melting in the pulsed laser ablation process. Acta Phys. Sin. 54, 12831289.CrossRefGoogle Scholar