Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-26T08:18:21.189Z Has data issue: false hasContentIssue false

Implantation of various energy metallic ions on aluminium substrate using a table top laser driven ion source

Published online by Cambridge University Press:  26 February 2014

Rabia Ahmad*
Affiliation:
Laser and Optronics centre, Department of Physics, University of Engineering and Technology, Lahore, Pakistan
M. Shahid Rafique
Affiliation:
Laser and Optronics centre, Department of Physics, University of Engineering and Technology, Lahore, Pakistan
M. Bilal Tahir
Affiliation:
Laser and Optronics centre, Department of Physics, University of Engineering and Technology, Lahore, Pakistan
Huma Malik
Affiliation:
Laser and Optronics centre, Department of Physics, University of Engineering and Technology, Lahore, Pakistan
*
Address correspondence and reprint requests to: Rabia Ahmad, Laser and Optronics centre, Department of Physics, University of Engineering and Technology, Lahore, Pakistan. E-Mail: [email protected]

Abstract

Particle acceleration is an important tool in material modification and several other applications. There are multiple techniques to generate and accelerate ion beams. In the current research work, ions emitted from laser induced plasma were accelerated by employing a DC high voltage extraction assembly. The Nd:YAG laser (1064 nm) with 10 mJ energy and 12 ns pulse width was irradiated on Aluminum target. Thomson parabola technique using Solid State Nuclear Track Detector (CR-39) was employed for measurement of ions energy generated from laser induced plasma. In response to a stepwise increase in acceleration potential from 0–10 kV, an evident increase in energy, in the range 627–730 keV, was observed. In order to utilize this facility as an ion source, Aluminum was exposed to these ions. The Optical and AFM micrographs revealed that the damage produced by the ions on Al surfaces, become more prominent with the increase in ion energy. TRIM simulations were performed for the analysis of the damage at the irradiated samples. Changes in the total displacements, target vacancies and replacement collisions, calculated by TRIM simulation, were analyzed for ion irradiations with increasing ion energies.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anwar, M.S., Latif, A., Iqbal, M., Rafique, M.S., Khaleeq-Ur-Rahman, M. & Siddique, S. (2006). Theoretical model for heat conduction in metals during interaction with ultra short laser pulse. Laser Part. Beams 24, 347353.CrossRefGoogle Scholar
Averback, R.S. & Diaz de la Rubia, T. (1997). Solid State Physics (Ehrenreich, H. & Spaepen, F., eds.). Cambridge: Academic Press.Google Scholar
Bartl, J. & Baranek, M. (2004). Emissivity of aluminum and its importance for radiometric measurement. Measur. Phys. Quant. 4, 3136.Google Scholar
Belloni, F., Doria, D., Lorusso, A. & Nassisi, V. (2006). Development of an ion source via laser ablation plasma. Proc. EPAC, Edinburg, Scotland THPCH 139, 31193121.Google Scholar
Bhuyan, H., Favre, M., Valderrama, E., Avaria, G., Guzman, F., Chuaqui, H., Mitchell, I., Wybdham, E., Saavedra, R. & Paulraj, M. (2007). Effect of high energy ion irradiation on Silicon substrate in a pulsed plasma device. App. Sur. Sci. 254, 197200.CrossRefGoogle Scholar
Borghesi, M., Audebert, P., Bulanov, S.V., Cowan, T., Fuchs, J., Gauthier, J.C., Mackinnon, A.J., Patel, P.K., Pretzler, G., Romagnani, L., Schiavi, A., Toncian, T. & Willi, O. (2005). High-intensity laser-plasma interaction studies employing laser-driven proton probes. Laser Part. Beams 23, 291295.CrossRefGoogle Scholar
Brambrink, E., Roth, M., Blazevic, A. & Schlegel, T. (2006). Modeling of the electrostatic sheath shape on the rear target surface in short-pulse laser-driven proton acceleration. Laser Part. Beams 24, 163168.Google Scholar
Bringa, E.M. & Johnson, R.E. (2002). Coulomb explosion and thermal spike. Phys. Rev. Lett. 88, 165501/1–4.Google Scholar
Caridi, F., Torrisi, L., Margarone, D. & Borrielli, A. (2008). Investigations on low temperature laser-generated plasmas. Laser Part. Beams 26, 265271.CrossRefGoogle Scholar
Chrisey, D.B. & Hubler, G.K. (1994). Pulsed Laser Deposition of Thin Films, pp. 3, 63, 69. New York: John Wiley and Sons, Inc.Google Scholar
Correa, A.A.Kohanoff, J., Artacho, E., Portal, D.S. & Caro, A. (2012). Non-adiabatic forces in ion-solid interaction: the initial stages of radiation damage. Phys. Rev. Lett. 108, 213201213205.Google Scholar
Doria, D., Lorussoni, A., Belloni, F., Nassisi, V., Torrisi, L. & Gammino, S. (2004). A study of the parameters of particles ejected from a laser plasma. Laser Part. Beams 22, 461467.Google Scholar
Elhassan, A., Abd Elmoniem, H.M. & Kassem, A.K. (2010). Effect of applying static electric field on the physical parameters and dynamics of laser induced plasma. J. Advanced Res. 1, 129136.CrossRefGoogle Scholar
Fisher, D., Fraenkel, M., Zinamon, Z., Henis, Z., Moshe, E., Horovitz, Y., Luzon, E., Maman, S. & Eliezer, S. (2005). Intraband and interband absorption of femtosecond laser pulses in copper. Laser Part. Beams 23, 391393.CrossRefGoogle Scholar
Fisher, D.V., Henis, Z., Eliezer, S. & Meyer-ter-Vehn, J. (2006). Core holes, charge disorder, and transition from metallic to plasma properties in ultrashort pulse irradiation of metals. Laser Part. Beams 24, 8194.CrossRefGoogle Scholar
Foti, G. (2001). Silicon carbide: From amorphous to crystalline material. App. Sur. Sci. 184, 2026.CrossRefGoogle Scholar
Giuffrida, L. & Torrisi, L. (2011). Post-acceleration of ions from the laser-generated plasma. Nukleonika 56, 161163.Google Scholar
Janson, M. (2003). Hydrogen diffusion and ion implantation in silicon carbide. In Material and Semiconductor Physics. Stockholm: Royal Institute of Technology.Google Scholar
Jungwirth, K. (2005). Recent highlights of the PALS research program. Laser Part. Beams 23, 177182.CrossRefGoogle Scholar
Krasa, J., Laska, L., Rohlena, K., Perine, V. & Hnatowicz, V. (2002). Energy spectra of Ag, Au, Sn, and Pb ions emitted from laser-created plasmas determined from their implantation depth profile in a metallic substrate. Laser Part. Beams 20, 109112.Google Scholar
Krushelnik, K., Clark, E.L., Beg, F.N., Dangor, A.E., Najmudin, Z., Norreys, P.A., Wei, M. & Zepf, M. (2005). High intensity laser-plasma sources of ions-physics and future applications. Plasma Phys. Contr. Fusion 47, B451B463.Google Scholar
Laska, L., Badziak, J., Gammino, S., Jungwirth, K., Kasperczuk, A., Krasa, J., Krousky, E., Kubes, P., Parys, P., Pfeifer, M., Pisarczyk, T., Rohlene, K., Rosinski, M., Ryc, L., Skala, J., Torrisi, L., Ullschmied, J., Velyhan, A. & Wolowski, J. (2007). The influence of an intense laser beam interaction with preformed plasma on the characteristics of emitted ion streams. Laser Part. Beams 25, 549556.Google Scholar
Laska, L., Jungwirth, K., Kralikova, B., Krasa, J., Pfeifer, M., Rohlena, K., Skala, J., Ullschmied, J., Badziak, J., Parys, P., Wolowski, J., Woryna, E., Torrise, L., Gammino, S. & Boody, F.P. (2004 a). Charge-energy distribution of Ta ions from plasmas produced by 1v and 3v frequencies of a high-power iodine laser. Rev. Sci. Instrum. 75, 15881591.Google Scholar
Laska, L., Jungwirth, K., Krasa, J., Krousky, E., Pfeifer, M., Rohlene, K., Ullschmied, J., Badziak, J., Parys, P., Wolowski, J., Torrisi, L., Gammino, S. & Boody, F.P. (2006 a). Self-focusing in processes of laser generation of highly-charged and high-energy heavy ions. Laser Part. Beams 24, 175179.Google Scholar
Laska, L., Jungwirth, K., Krasa, J., Krousky, E., Pfeifer, M., Rohlena, K., Skala, J., Ullschmied, J., Velyhan, A., Kubes, P., Badziak, J., Parys, P., Rosinski, M., Ryc, L. & Wolowski, J. (2006 b). Experimental studies of interaction of intense long laser pulse with a laser-created Ta plasma. Czech. J. Phys. 56, B506B514.CrossRefGoogle Scholar
Laska, L., Jungwirth, K., Krasa, J., Krousky, E., Pfeifer, M., Rohlena, K., Velyhan, A., Ullscmied, J., Gammino, S., Torrisi, L., Badziak, J., Payys, P., Rosinski, M., Ryc, L., & Wolowski, J. (2008). Angular distributions of ions emitted from laser plasma produced at various irradiation angles and laser intensities. Laser Part. Beams 26, 555565.Google Scholar
Laska, L., Jungwirth, K., Krasa, J., Pfeifer, M., Rohlene, K., Ullcshmied, J., Badziak, J., Parys, P., Wolowski, J., Boody, F.P., Gammino, S. & Torrisi, L. (2004 b). Generation of extreme high laser intensities in plasma. Czech. J. Phys. 54, C370C377.Google Scholar
Laska, L., Jungwirth, K., Krasa, J., Pfeifer, M., Rohlene, K., Ullschmied, J., Badziak, J., Parys, P., Wolowski, J., Gammino, S., Torrisi, L. & Boody, F.P. (2005). Charge-state and energy enhancement of laser-produced ions due to nonlinear processes in preformed plasma. Appl. Phys. Lett. 86, 081502.CrossRefGoogle Scholar
Li, L.M., Liu, L., Cheng, G.X., Xu, Q.F., Ge, X.J. & Wen, J.C. (2009). Layer structure, plasma jet, and thermal dynamics of Cu target irradiated by relativistic pulsed electron beam. Laser Part. Beams 27, 497509.CrossRefGoogle Scholar
Manova, D., Gerlach, J.W., Neumann, H.Assmann, W. & Mandl, S. (2006). Phase formation in Ti after high fluence/high temperature nitrogen implantation. Nucl. Instrum. Meth. Phys. Res. B 242, 282284.CrossRefGoogle Scholar
Margarone, D., Torrisi, L., Gammino, S., Krasa, J., Krousky, E., Laska, L., Pfeifer, M., Rohlena, K., Skala, J., Ullschmied, J., Velyhan, A., Parys, P., Rosinski, M., Ryc, L. & Wolowski, J. (2006). Studies of the laser-created craters produced on solid surfaces at various experimental conditions. Czech. J. Phys. 56, B542B549.Google Scholar
Moller, W. (2004). Fundamentals of ion-solid interaction. Technical university of Dresden.Google Scholar
Ogawa, M., Yoshida, M., Nakajima, M., Hasegawa, J., Fukata, S., Horioka, K. & Oguri, Y. (2003). High-current laser ion source based on a low-power laser. Laser Part. Beams 21, 633638.CrossRefGoogle Scholar
Park, H.S., Nam, S.H. & Park, S.M. (2007). Laser ablation of a Zn target in electric field. J. Phys. 59, 384387.Google Scholar
Rafique, M.S., Khaleeq-ur-Rahman, M., Aziz-ul-Rehman, Siraj, K. & Khan, F. (2007). Laser-produced copper ion energy spectrum employing Thomson scattering technique. Laser Phys. 17, 282285.Google Scholar
Rai, V.N., Shukla, M. & Pant, H.C. (2000). Effect of chamber pressure induced space charge potential on ion acceleration in laser produced plasma. Laser Part. Beams 18, 315324.Google Scholar
Renk, T.J., Mann, G.A. & Torres, G.A. (2008). Performance of a pulsed ion beam with a renewable cryogenically cooled ion source. Laser Part. Beams 26, 545554.Google Scholar
Roshan, M.V., Rawat, R.S., Babazadeh, A.R., Emami, M., Sadat Kiai, S.M., Verma, R., Lin, J.J., Talebitaher, A.R., Lee, P. & Springham, S.V. (2008). High energy ions and energetic plasma irradiation effects on Aluminum in a Filippov-type plasma focus. App. Sur. Sci. 255, 24612465.Google Scholar
Roth, M., Brambrink, E., Audebert, P., Blazevic, A., Clarke, R., Cobble, J., Cowan, T.E., Fernendez, J., Fuchs, J., Geissel, M., Habs, D., Hegelich, M., Karsch, S., Ledingham, K., Neely, D., Ruhl, H., Schlegel, T. & Schreiber, J. (2005). Laser accelerated ions and electron transport in ultraintense laser matter interaction. Laser Part. Beams 23, 95100.Google Scholar
Satpati, B., Goswami, D.K., Vaishnav, U.D., Som, T., Dev, B.N. & Satyam, P.V. (2003). Phy. Rev. Lett. 212, 157163.Google Scholar
Schaumann, G., Schollmeier, M.S., Rodriguez-prieto, G., Blazevic, A., Brambrink, E., Geissel, M., Korostiy, S., Pirzadeh, P., Roth, M., Rosmej, F.B., Faenov, A.Y., Pikuz, T.A., Tsigutkin, K., Maron, Y., Tahir, N.A. & Hoffmann, D.H.H. (2005). High energy heavy ion jets emerging from laser plasma generated by long pulse laser beams from the NHELIX laser system at GSI. Laser Part. Beams 23, 503512.Google Scholar
Springham, S.V., Lee, S. & Rafique, M.S. (2000). Correlated deuteron energy spectra and neutron yield for a 3 kJ plasma focus. Plasma Phys. Control. Fusion 42, 10231032.Google Scholar
Stasic, J., Gakovic, B., Krmpot, A., Pavlovic, V., Trtica, M. & Jelenkovic, B. (2009). Nickel-based super-alloy Inconel 600 morphological modifications by high repetition rate femtosecond Ti:sapphire laser. Laser Part. Beams 27, 699707.CrossRefGoogle Scholar
Torrisi, L., Ando, L., Gammino, S., Krasa, J. & Laska, L. (2001). Ion and netral emission from pulsed laser irradiation of metals. Nucl. Instrum. Meth. 184, 327336.CrossRefGoogle Scholar
Torrisi, L., Margarone, D., Caridi, F., Borrielli, A. & Gammino, S. (2008). A laser driven acceleration method. Proc. EPAC08 084, 253255.Google Scholar
Torrisi, L., Margarone, D., Gammino, S. & Ando, L. (2007). Ion energy increase in laser-generated plasma expanding through axial magnetic field trap. Laser Part. Beams 25, 453464.Google Scholar
Xin, J.P., Zhu, X.P. & Lei, M.K. (2010). Significance of time-of-flight ion energy spectrum on energy deposition into matter by high-intensity pulsed ion beam. Laser Part. Beams 28, 429436.CrossRefGoogle Scholar
Yeates, P., Costello, J.T. & Kennedy, E.T. (2010). The DCU laser ion source. Rev. Sci. Instrum. 81, 043305/1–14.CrossRefGoogle ScholarPubMed
Zeigler, J.F., Biersack, J.P. & Ziegler, M.D. (2008). The Stopping and Range of Ions in Matter. Morrisville: Lulu Press Co.Google Scholar