Published online by Cambridge University Press: 28 May 2014
Hundred picoseconds laser pulse with high energy and high peak power has broad application prospects such as inertial confinement fusion shock ignition. But it is hard to get effective amplification through MOPA or chirped pulse amplification method. Through simulated Brillouin scattering method, 100 picoseconds laser pulse can be amplified efficiently. To be able to meet the need of high energy and high-intensity laser pulse amplification, scalable two cell structure and four different FC series liquid were used to fulfill this experiment. The results indicate that the magnification of Stokes energy and efficiency of energy extraction are closely related to medium parameters and energy parameters. The minimum width of 340 ps Stokes pulse was amplified by 13.5 times in this experiment.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.