Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-20T07:28:24.490Z Has data issue: false hasContentIssue false

Hot spot heating process estimate using a laser-accelerated quasi-Maxwellian deuteron beam

Published online by Cambridge University Press:  13 December 2011

Xiaoling Yang*
Affiliation:
Department of Nuclear, Plasma and Radiological Engineering, University of Illinois, Urbana, Illinois
George H. Miley
Affiliation:
Department of Nuclear, Plasma and Radiological Engineering, University of Illinois, Urbana, Illinois
Kirk A. Flippo
Affiliation:
P-24 Plasma Physics, Los Alamos National Laboratory, Los Alamos, New Mexico
Heinrich Hora
Affiliation:
The University of New South Wales, Sydney, Australia
*
Address correspondence and reprint requests to: Xiaoling Yang, Department of Nuclear, Plasma and Radiological Engineering, University of Illinois, Urbana, IL 61801. E-mail: [email protected]

Abstract

The hot spot heating process by an assumed deuteron beam is evaluated in order to estimate the contribution of the energy produced by the deuteron beam-target fusion to the heating process. The deuteron beam energy versus the number of deuterons is evaluated through the experimentally achieved proton beam energy distribution using the TRIDENT short pulse laser at the Los Alamos National Laboratory (LANL). The corresponding hot spot heating is then calculated using this assumed deuteron beam spectrum. The resulting first order heating dynamics is employed in the expanded “bonus” energy calculation, and a 12.73% extra energy from deuteron beam-target fusion was found with the assumed deuteron spectrum when ρrb = 4.5 g/cm2 is considered, where ρ is the fuel density, and rb is the ion beam focusing radius on the target. The results provide further insight into the contribution of the extra heat produced by deuteron beam-target fusion to the hot spot ignition process. A further analysis of how a converter foil using ultra-high-density cluster materials can help to achieve the yield requirements for ignition is presented.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Atzeni, S. (1999). Inertial fusion fast ignitor: Igniting pulse parameter window vs the penetration depth of the heating particles and the density of the precompressed fuel. Phys. Plasmas 6, 33163326.CrossRefGoogle Scholar
Bari, M.A., Sheng, Z.M., Wang, W.M., Li, Y.T., Salahuddin, M., Nasim, M.H., Naz, G.S., Gondal, M.A. & Zhang, J. (2010). Optimization for deuterium ion acceleration in foam targets by ultra-intense lasers. Laser Part. Beams 28, 333341.CrossRefGoogle Scholar
Bychenkov, V., Rozmus, W., Maksimchuk, A., Umstadter, D. & Capjack, C. (2001). Fast ignitor concept with light ions. Plasma Phys. Rept. 27, 10171020.CrossRefGoogle Scholar
Ceccotti, T., Lévy, A., Popescu, H., Réau, F., D'Oliveira, P., Monot, P., Geindre, J.P., Lefebvre, E. & Martin, P. (2007). Proton acceleration with high-intensity ultrahigh-contrast laser pulses. Phys. Rev. Lett. 99, 185002.CrossRefGoogle ScholarPubMed
Deutsch, C. (2003). Transport of megaelectron volt protons for fast ignition. Laser Part. Beams 21, 3335.CrossRefGoogle Scholar
Fernández, J.C., Albright, B.J., Flippo, K.A., Hegelich, B.M., Kwan, T.J., Schmitt, M.J. & Yin, L. (2008). Progress on ion based fast ignition. J. Phys. Conf. Ser. 2, 022051.CrossRefGoogle Scholar
Fernández, J.C., Hegelich, B.M., Cobble, J.A., Flippo, K.A., Letzring, S.A., Johnson, R.P., Gautier, D.C., Shimada, T., Kyrala, G.A., Wang, Y., Wetteland, C.J. & Schreiber, J. (2005). Laser-ablation treatment of short-pulse laser targets: Toward an experimental program on energetic-ion interactions with dense plasmas. Laser Part. Beams 23, 267273.CrossRefGoogle Scholar
Fernández, J.C., Honrubia, J.J., Albright, B.J., Flippo, K.A., Gautier, C.D., Hegelich, B.M., Schmitt, M.J., Temporal, M. & Lin, Y. (2009). Progress and prospects of ion-driven fast ignition. Nucl. Fusion 49, 065004.CrossRefGoogle Scholar
Flacco, A., Sylla, F., Veltcheva, M., Carrié, M., Nuter, R., Lefebvre, E., Batani, D. & Malka, V. (2010). Dependence on pulse duration and foil thickness in high-contrast-laser proton acceleration. Phys. Rev. E 81, 036405.CrossRefGoogle ScholarPubMed
Flippo, K.A., d'Humieres, E., Gaillard, S.A., Rassuchine, J., Gautier, D.C., Schollmeier, M., Nurnberg, F., Kline, J.L., Adams, J., Albright, B., Bakeman, M., Harres, K., Johnson, R.P., Korgan, G., Letzring, S., Malekos, S., Renard-LeGalloudec, N., Sentoku, Y., Shimada, T., Roth, M., Cowan, T.E., Fernandez, J.C. & Hegelich, B.M. (2008 a). Increased efficiency of short-pulse laser-generated proton beams from novel flat-top cone targets. Phys. Plasmas 15, 056709.CrossRefGoogle Scholar
Flippo, K.A., Gaillard, S.A., Kluge, T., Bussmann, M., Offermann, D.T., Cobble, J.A., Schmitt, M.J., Bartal, T., Beg, F.N., Cowan, T.E., Gall, B., Gautier, D.C., Geissel, M., Kwan, T.J., Korgan, G., Kovaleski, S., Lockard, T., Malekos, S., Montgomery, D.S., Schollmeier, M. & Sentoku, Y. (2010). Advanced laser particle accelerator development at LANL: From fast ignition to radiation oncology. AIP Conf. Proc. 1299, 693698.CrossRefGoogle Scholar
Flippo, K.A., Workman, J., Gautier, D.C., Letzring, S., Johnson, R.P. & Shimada, T. (2008 b). Scaling laws for energetic ions from the commissioning of the new Los Alamos National Laboratory 200 TW Trident laser. Rev. Sci. Instr. 79, 10E534.CrossRefGoogle ScholarPubMed
Frolov, A.M. (1998). The thermonuclear burn-up in deuterium-tritium mixtures and hydrides of light elements. Plasma Phys. Contr. Fusion 40, 14171428.CrossRefGoogle Scholar
Henig, A., Kiefer, D., Markey, K., Gautier, D.C., Flippo, K.A., Letzring, S., Johnson, R.P., Shimada, T., Yin, L., Albright, B.J., Bowers, K.J., Fernández, J.C., Rykovanov, S.G., Wu, H.C., Zepf, M., Jung, D., Liechtenstein, V.K., Schreiber, J., Habs, D. & Hegelich, B.M. (2009). Enhanced laser-driven ion acceleration in the relativistic transparency regime. Phys. Rev. Lett. 103, 045002.CrossRefGoogle ScholarPubMed
Honrubia, J.J., Fernandez, J.C., Temporal, M., Hegelich, B.M. & Meyer-ter-Vehn, J. (2009). Fast ignition of inertial fusion targets by laser-driven carbon beams. Phys. Plasmas 16, 102701.CrossRefGoogle Scholar
Honrubia, J.J. & Meyer-ter-Vehn, J. (2009). Fast ignition of fusion targets by laser-driven electrons. Plasma Phys. Control. Fusion 51, 014008.CrossRefGoogle Scholar
Hora, H., Miley, G.H., Yang, X. & Lalousis, P. (2011). Strong shock-phenomena at petawatt-picosecond laser side-on ignition fusion of uncompressed hydrogen-boron11. Astrophys. Space Sci. 336, 225228.CrossRefGoogle Scholar
Kaluza, M., Schreiber, J., Santala, M.I.K., Tsakiris, G.D., Eidmann, K., Meyer-ter-Vehn, J. & Witte, K.J. (2004). Influence of the Laser Prepulse on Proton Acceleration in Thin-Foil Experiments. Phys. Rev. Lett. 93, 045003.CrossRefGoogle ScholarPubMed
Liseikina, T.V., Prellino, D., Cornolti, F. & Macchi, A. (2008). Ponderomotive Acceleration of ions: Circular versus linear polarization. IEEE Plasma Sci. Trans. 36, 18661871.CrossRefGoogle Scholar
Maksimchuk, A., Flippo, K., Krause, H., Mourou, G., Nemoto, K., Shultz, D., Umstadter, D., Vane, R., Bychenkov, V., Dudnikova, G., Kovalev, V., Mima, K., Novikov, V., Sentoku, Y. & Tolokonnikov, S. (2004). High-energy ion generation by short laser pulses. Plasma Phys. Reprt. 30, 473495.CrossRefGoogle Scholar
Maksimchuk, A., Gu, S., Flippo, K., Umstadter, D. & Bychenkov, V.Y. (2000). Forward ion acceleration in thin films driven by a high-intensity laser. Phys. Rev. Lett. 84, 4108.CrossRefGoogle ScholarPubMed
Miley, G.H. & Yang, X. (2009). Deuterium cluster target for ultra-high density fusion. Fusion Sci. Techn. 56, 395400.CrossRefGoogle Scholar
Miley, G.H., Yang, X., Heinrich, H., Flippo, K., Gaillard, S., Offermann, D. & Gautier, D.C. (2010). Advances in proposed D-Cluster inertial confiment fusion target. J.Phys. Confer. Ser. 244, 032036.CrossRefGoogle Scholar
Murakami, Y., Kitagawa, Y., Sentoku, Y., Mori, M., Kodama, R., Tanaka, K.A., Mima, K. & Yamanaka, T. (2001). Observation of proton rear emission and possible gigagauss scale magnetic fields from ultra-intense laser illuminated plastic target. Phys. Plasmas 8, 41384143.CrossRefGoogle Scholar
Naumova, N., Schlegel, T., Tikhonchuk, V.T., Labaune, C., Sokolov, I.V. & Mourou, G. (2009). Hole boring in a DT pellet and fast-ion ignition with ultraintense laser pulses. Phys. Rev. Lett. 102, 025002.CrossRefGoogle Scholar
Nemoto, K., Maksimchuk, A., Banerjee, S., Flippo, K., Mourou, G., Umstadter, D. & Bychenkov, V.Y. (2001). Laser-triggered ion acceleration and table top isotope production. Appl. Phys. Lett. 78, 595597.CrossRefGoogle Scholar
Nurnberg, F., Schollmeier, M., Brambrink, E., Blazevic, A., Carroll, D.C., Flippo, K., Gautier, D.C., Geissel, M., Harres, K., Hegelich, B.M., Lundh, O., Markey, K., McKenna, P., Neely, D., Schreiber, J. & Roth, M. (2009). Radiochromic film imaging spectroscopy of laser-accelerated proton beams. Rev. Sci. Instr. 80, 033301033313.CrossRefGoogle ScholarPubMed
Patel, P.K., Mackinnon, A.J., Key, M.H., Cowan, T.E., Foord, M.E., Allen, M., Price, D.F., Ruhl, H., Springer, P.T. & Stephens, R. (2003). Isochoric heating of solid-density matter with an ultrafast proton beam. Phys. Rev. Lett. 91, 125004.CrossRefGoogle ScholarPubMed
Pennington, D.M., Brown, C.G., Cowan, T.E., Hatchett, S.P., Henry, E., Herman, S., Kartz, M., Key, M., Koch, J., MacKinnon, A.J., Perry, M.D., Phillips, T.W., Roth, M., Sangster, T.C., Singh, M., Snavely, R.A., Stoyer, M., Stuart, B.C. & Wilks, S.C. (2000). Petawatt laser system and experiments. IEEE Quan. Electron. 6, 676688.CrossRefGoogle Scholar
Robson, L., Simpson, P.T., Clarke, R.J., Ledingham, K.W.D., Lindau, F., Lundh, O., McCanny, T., Mora, P., Neely, D., Wahlstrom, C.G., Zepf, M. & McKenna, P. (2007). Scaling of proton acceleration driven by petawatt-laser-plasma interactions. Nat Phys 3, 5862.CrossRefGoogle Scholar
Roth, M., Cowan, T.E., Key, M.H., Hatchett, S.P., Brown, C., Fountain, W., Johnson, J., Pennington, D.M., Snavely, R.A., Wilks, S.C., Yasuike, K., Ruhl, H., Pegoraro, F., Bulanov, S.V., Campbell, E.M., Perry, M.D. & Powell, H. (2001). Fast ignition by intense laser-accelerated proton beams. Phys. Rev. Lett. 86, 436439.CrossRefGoogle ScholarPubMed
Shmatov, M.L. (2004). Creation of the directed plasma fluxes with ignition of microexplosions by and with the use of distant microexplosions. JBIS 57, 362378.Google Scholar
Shmatov, M.L. (2007). Some thermonulear power plants as the possible sources of He3 for space propulsion systems. J. British Interplan. Soc. 60, 180187.Google Scholar
Snavely, R.A., Key, M.H., Hatchett, S.P., Cowan, T.E., Roth, M., Phillips, T.W., Stoyer, M.A., Henry, E.A., Sangster, T.C., Singh, M.S., Wilks, S.C., MacKinnon, A., Offenberger, A., Pennington, D.M., Yasuike, K., Langdon, A.B., Lasinski, B.F., Johnson, J., Perry, M.D. & Campbell, E.M. (2000). Intense high-energy proton beams from petawatt-laser irradiation of solids. Phys. Rev. Lett. 85, 29452948.CrossRefGoogle ScholarPubMed
Tabak, M., Hammer, J., Glinsky, M.E., Kruer, W.L., Wilks, S.C., Woodworth, J., Campbell, E.M., Perry, M.D. & Mason, R J. (1994). Ignition and high gain with ultrapowerful lasers. Phys. Plasmas 1, 16261634.CrossRefGoogle Scholar
Tikhonchuk, V.T., Schlegel, T., Regan, C., Temporal, M., Feugeas, J.-L., Nicolaï, P. & Ribeyre, X. (2010). Fast ion ignition with ultra-intense laser pulses. Nucl. Fusion 50, 045003.CrossRefGoogle Scholar
Willingale, L., et al. (2011). Front versus rear side light-ion acceleration from high-intensity laser–solid interactions. Plasma Phys. Contr. Fusion 53, 014011.CrossRefGoogle Scholar
Yang, X., Miley, G.H., Flippo, K. & Hora, H. (2011 a). Energy enhancement for deuteron beam fast ignition of a pre-compressed inertial confinement fusion (ICF) targe. Phys. Plasmas 18, 032703.CrossRefGoogle Scholar
Yang, X., Miley, G.H., Flippo, K.A., Gaillard, S.A., Offermann, D.T., Hora, H.B., Gall, B., Burris-Mog, T., Rassuchine, J., Plechaty, C. & Ren, J. (2011 b). D-cluster converter foil for laser-accelerated deuteron beams: Towards deuteron-beam driven fast ignition. Fusion Sci. Techn. 60, 615619.CrossRefGoogle Scholar