Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-09T02:59:45.571Z Has data issue: false hasContentIssue false

High-precision small-scale laser focal spot measurements

Published online by Cambridge University Press:  06 February 2013

Z.W. Lu*
Affiliation:
National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, Harbin, China
X.Y. Liu
Affiliation:
National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, Harbin, China
X. Wang
Affiliation:
National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, Harbin, China
D.X. Ba
Affiliation:
National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, Harbin, China
Z.H. Jiang
Affiliation:
Changchun Institute of Optics, Fine mechanics and Physics, Chinese Academy of Sciences, Changchun, China
P.Y. Du
Affiliation:
National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, Harbin, China
C.Y. Zhu
Affiliation:
National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, Harbin, China
*
Address correspondence and reprint requests to: Z.W. Lu, National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, P. O. Box 3031, Harbin 150080, China. E-mail: [email protected].

Abstract

In this paper, a method of two-dimensional fine-scanning with charge coupled device has been conducted to precisely measure spatial position and intensity distribution of small-scale focal spot (diameter in microns). The measurement accuracy of the small-scale focal spot position is better than 1 µm when the fluctuations of the light energy and background noise are relatively small. The theoretical analysis is consistent with the experimental results.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Antici, P., Fuchs, J., d'Humières, E., Robiche, J., Brambrink, E., Atzeni, S., Schiavi, A., Sentoku, Y., Audebert, P. & Pépin, H. (2009). Laser acceleration of high-energy protons in variable density plasmas. New J. Phys. 11, 023038.CrossRefGoogle Scholar
Bahk, S.-W., Rousseau, P., Planchon, T.A., Chvykov, V., Kalintchenko, G., Maksimchuk, A., Mourou, G.A. & Yanovsky, V. (2004). Generation and characterization of the highest laser intensities (1022 W/cm2). Opt. Lett. 29, 28372839.CrossRefGoogle ScholarPubMed
Baker, K.L., Homoelle, D., Utternback, E., Stappaerts, E.A., Siders, C.W. & Barty, C.P.J. (2009). Interferometric adaptive optics testbed for laser pointing, wave-front control and phasing. Opt. Express 17, 1669616709.CrossRefGoogle ScholarPubMed
Bromage, J., Bahk, S.-W., Irwin, D., Kwiatkowski, J., Pruyne, A., Millecchia, M., Moore, M. & Zuegel, J.D. (2008). A focal-spot diagnostic for on-shot characterization of high-energy petawatt lasers. Opt. Express 16, 1656116572.CrossRefGoogle ScholarPubMed
Burkhart, S.C., Bliss, E., Nicola, P.D., Kalantar, D., Lowe-Webb, R., McCarville, T., Nelson, D., Salmon, T., Schindler, T., Villanueva, J. & Wilhelmsen, K. (2011). National Ignitio n Facilit y system alignment (English translation here). Appl. Optics 50, 11361157.CrossRefGoogle Scholar
Chambaret, J.P., Canova, F., Lopez-Martens, R., Chériaux, G. & Mourou, G. (2007). ILE 25PW single laser beamline: The French step for the European Extreme Light Infrastructure (ELI). Quantum Electronics and Laser Science Conference. IEEE, Baltimore, IEEE.Google Scholar
Dunne, M. (2006). A European Path to Fast Ignition Fusion Energy ICUIL. France: Cassis.Google Scholar
Garrec, B.L., Atzeni, S., Batani, D., Gizzi, L., Ribeyre, X., Schurtz, G., Schiavi, A., Ertel, K., Collier, J., Edwards, C., Perlado, M., Honrubia, J.J. & Rus, B. (2011). HiPER laser from capsule design to the laser reference design. In High Power Lasers for Fusion Research. SPIE, San Francisco; SPIE.Google Scholar
Imasaki, K. & Li, D. (2007a). An approach to hydrogen production by inertial fusion energy. Laser Part. Beams 25, 99105.CrossRefGoogle Scholar
Imasaki, K. & Li, D. (2007b). A new approach of laser induced nuclear fusion in plasma by intense laser propagation. J. Phys. 112, 042071.Google Scholar
Imasaki, K. & Li, D. (2008). An approach of laser induced nuclear fusion. Laser Part. Beams 26, 37.CrossRefGoogle Scholar
Imasaki, K. & Li, D. (2009). Feasibility of new laser fusion by intense laser field. Laser Part. Beams 27, 273279.CrossRefGoogle Scholar
Labaune, C., Hulin, D., Galvanauskas, A. & Mourou, G.A. (2008). On the feasibility of a fiber-based inertial fusion laser driver. Opt. Commun. 281, 40754080.CrossRefGoogle Scholar
Moses, E.I. (2009). Ignition on the National Ignition Facility: A path towards inertial fusion energy. Nucl. Fusion 49, 104022.CrossRefGoogle Scholar
Nuckolls, J., Wood, L. & Thiessen, A. (1972). Laser compression of matter to super-high densities: Thermonuclear (CTR) application. Nat. 239, 139142.CrossRefGoogle Scholar
Oades, K., Evans, A., Slark, G., Foster, J., Eagleton, R. & Clark, E. (2004). Target diagnostics for the future AWE Orion laser facility. Rev. Sci. Instrum. 75, 42224224.CrossRefGoogle Scholar
Schwarz, J., Rambo, P., Geissel, M., Edens, A., Smith, I., Brambrink, E., Kimmel, M. and Atherton, B. (2007). Activation of the Z-Petawatt Laser at Sandia National Laboratories. J. Phys. 112, 032020.Google Scholar
Yanovsky, V., Chvykov, V., Kalinchenko, G., Rousseau, P., Planchon, T., Matsuoka, T., Maksimchuk, A., Nees, J., Cheriaux, G., Mourou, G. & Krushelnick, K. (2008). Ultra-high intensity- 300-TW laser at 0.1 Hz repetition rate. Opt. Express 16, 21092114.CrossRefGoogle ScholarPubMed
Zuegel, J.D., Borneis, S. & Barty, C. (2006). Laser challenges for fast ignition. Fusion Sci. Technol. 49, 453482.CrossRefGoogle Scholar