Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-26T04:34:34.865Z Has data issue: false hasContentIssue false

High-power microwave emission from a virtual cathode oscillator

Published online by Cambridge University Press:  09 March 2009

H. Sze
Affiliation:
Physics International Company, 2700 Merced Street, San Leandro, CA 94577, USA
J. Benford
Affiliation:
Physics International Company, 2700 Merced Street, San Leandro, CA 94577, USA
W. Woo
Affiliation:
Physics International Company, 2700 Merced Street, San Leandro, CA 94577, USA

Abstract

Pinched electron beams emit high power microwaves by formation of a virtual cathode. Radiation occurs simultaneously with pinching or slightly thereafter. Observations of strong electrostatic fields and the partitioning of current into reflexing and transmitting populations at the same time that microwaves are emitted indicate virtual cathode formation. Microwaves originate mainly from the virtual cathode side of the anode. A two-dimensional model for the electron flow in the presence of a virtual cathode is presented. The model allows for electron reflexing and velocity distribution spread. Solutions with strong radial flow agree closely with microwave measurements, and result in the microwave frequency scaling linearly with diode current.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Benford, J., Sze, H., Woo, W. & Harteneck, B. 1986 Phys. Rev. Lett., 56, 344.Google Scholar
Brandt, H. E., Bromborsky, A., Burns, H. B. & Kehs, R. A. 1977 Proceedings of the Second International Topical Conference on High Power Electron and Ion Beam Research and Technology,(Cornell University,Ithaca), Vol. 11, p. 649.Google Scholar
Burkhart, S., Scarpetti, R. & Lundberg, R. 1985 J. Appl. Phys. 58, 28.Google Scholar
Clark, C. 1985 Sandia National Lab. Private Communication.Google Scholar
Creedon, J. 1985 Physics International Co. Private Communications.Google Scholar
Davis, H. A., Bartsch, R. R., Thode, L. E., Sherwood, E. G. & Stringfield, R. M. 1985 Phys. Rev. Lett., Vol. 55, No. 21, 18, p. 2293.CrossRefGoogle Scholar
Didenko, A. N., Fomenko, G. P., Gleizer, I. Z., Krasik, Ya. E., Melnikov, G. V., Perelygin, S. F., Shtein, Yu. G., Sulakshin, A. S., Tsvetkov, V. I. & Zerlitsin, A. C. 1979a Proc. of the Third International Topical Conference on High Power Electron and Ion Beam Research and Technology,Novosibirsk USSR,683.Google Scholar
Didenko, A. N., Krasik, Ya. E., Perelygin, S. F. & Fomenko, G. P. 1979b Sov. Tech. Phys. Lett. 5, 128.Google Scholar
Kwan, T. J. T. 1984 Phys. Fluids 27, 228; Devolder, B. G., Thode, L. E., Snell, G. M. & Kwan, T. J. T. 1984 Bull. Am. Phys. Soc. 29, 1283.CrossRefGoogle Scholar
Mahaffey, R. A., Sprangle, P., Golden, P. & Kapetanakos, C. A. 1977 Phys. Rev. Lett. 39, 843.Google Scholar
Miller, R. B. 1982 An Introduction to the Physics of Intense Charge Particle Beams, (Plenum Press, New York), p. 31.Google Scholar
Sze, H., Benford, J., Young, T., Bromley, D. & Harteneck, B. 1985 IEEE Trans. on Plasma Science, Vol. PS-13, No. 6, p. 492.Google Scholar
Woo, W.Phys. of Fluids 30 (1), January 1987.Google Scholar