Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-19T03:12:26.111Z Has data issue: false hasContentIssue false

Highly efficient, easily spectrally tunable X-ray backlighting for the study of extreme matter states

Published online by Cambridge University Press:  17 September 2009

B. Loupias
Affiliation:
Laboratoire Pour L'utilisation Des Lasers Intenses, Ecole Polytechnique, France
F. Perez
Affiliation:
Laboratoire Pour L'utilisation Des Lasers Intenses, Ecole Polytechnique, France
A. Benuzzi-Mounaix
Affiliation:
Laboratoire Pour L'utilisation Des Lasers Intenses, Ecole Polytechnique, France
N. Ozaki
Affiliation:
Laboratoire Pour L'utilisation Des Lasers Intenses, Ecole Polytechnique, France Institute of Laser Engineering, Osaka University, Osaka, Japan
M. Rabec
Affiliation:
Laboratoire Pour L'utilisation Des Lasers Intenses, Ecole Polytechnique, France
L.E. Gloahec
Affiliation:
Laboratoire Pour L'utilisation Des Lasers Intenses, Ecole Polytechnique, France
T.A. Pikuz
Affiliation:
Advanced Photon Research Center, Kansai Photon Science Institute, Japan Atomic Energy Agency, Kizugawa-city, Kyoto, Japan and Joint Institute For High Temperatures Russian Academy of Sciences, Moscow, Russia
A.Ya. Faenov*
Affiliation:
Advanced Photon Research Center, Kansai Photon Science Institute, Japan Atomic Energy Agency, Kizugawa-city, Kyoto, Japan and Joint Institute For High Temperatures Russian Academy of Sciences, Moscow, Russia
Y. Aglitskiy
Affiliation:
Science Applications International Corporation, Mclean, Virginia
M. Koenig
Affiliation:
Laboratoire Pour L'utilisation Des Lasers Intenses, Ecole Polytechnique, France
*
Address correspondence and reprint requests to: Anatoly Ya. Faenov, Advanced Photon Research Center, Kansai Photon Science Institute, Japan Atomic Energy Agency, Kizugawa-city, Kyoto, 619-0215, Japan. E-mail: [email protected]

Abstract

An improved high luminosity, easily spectrally tunable backlighting scheme based on a spherically bent crystal is considered in this paper. Contrary to the traditional backlighting scheme, we used crystal far from normal incidence, and the backlighter source was inside the Rowland circle. With the presented configuration, we obtained a spatial resolution up to 8 µm in the desired direction with an X-ray backlighting energy close to 5 keV. Detailed discussions and ray-tracing calculations show that with this convenient scheme resolution down to 5 µm can be achieved. A dedicated application to high energy density physics is presented: the radiography of shock compressed matter.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aglitskiy, Y., Lehechka, T., Obenschain, S., Bodner, S., Pawley, C., Gerber, K., Sethian, J., Brown, C.M., Seely, J., Feldman, U. & Holland, G. (1998). High-resolution monochromatic X-ray imaging system based on spherically bent crystals. Appl. Opt. 37, 52535361.CrossRefGoogle ScholarPubMed
Aglitskiy, Y., Lehechka, T., Obenschain, S., Pawley, C., Brown, C.M. & Seely, J. (1999). X-ray crystal imagers for inertial confinement fusion experiments. Rev. Sci. Instrum. 70, 530535.CrossRefGoogle Scholar
Baton, S.D., Koenig, M., Fuchs, J., Benuzzi-Mounaix, A., Guillou, P., Loupias, B., Vinci, T., Gremillet, L., Rousseaux, C., Drouin, M., Lefebvre, E., Dorchies, F., Fourment, C., Santos, J.J., Batani, D., Morace, A., Redaelli, R., Nakatsutsumi, M., Kodama, R., Nishida, A., Ozaki, N., Norimatsu, T., Aglitskiy, Y., Atzeni, S. & Schiavi, A. (2008). Inhibition of fast electron energy deposition due to preplasma filling of cone-attached targets. Phys. Plasmas 15, 042706.CrossRefGoogle Scholar
Belyaev, L.M., Gil'varg, A.B., Mikhailov, Yu.A., Pikuz, S.A., Sklizkov, G.V., Faenov, A.Ya. & Fedotov, S.I. (1976). X-ray photography of laser plasmas with the aid of analyzer crystals bent to form second-order surfaces. Sov. J. Quant. Electron. 6, 11211122.CrossRefGoogle Scholar
Benuzzi-Mounaix, A., Koenig, M., Ravasio, A., Vinci, T., Ozaki, N., Rabec le Gloahec, M., Loupias, B., Huser, G., Henry, E., Bouquet, S., Michaut, C., Hicks, D., MacKinnon, A., Patel, P., Park, H.S., Le Pape, S., Boehly, T., Borghesi, M., Cecchetti, M., Notley, M., Clark, R., Bandyopadhyay, S., Atzeni, S., Schiavi, A., Aglitskiy, Y., Faenov, A., Pikuz, T., Batani, D., Dezulian, R. & Tanaka, K. (2006). Laser-driven shock waves for the study of extreme matter states. Plasma Phys. Contr. Fusion 48, B347B358.CrossRefGoogle Scholar
Benuzzi-Mounaix, A., Loupias, B., Koenig, M., Ravasio, A., Ozaki, N., Rabec le Gloahec, M., Vinci, T., Aglitskiy, Y., Faenov, A.Ya., Pikuz, T. & Boehly, T. (2008). Density measurement of low-Z shocked material from monochromatic x-ray two-dimensional images. Phys. Rev. E 77, 045402.CrossRefGoogle ScholarPubMed
Cauble, R., Perry, T.S., Bach, D.R., Budil, K.S., Hammel, B.A., Collins, G.W., Gold, D.M., Dunn, J., Celliers, P. & Da Silva, L.B. (1998). Absolute equation-of-state data in the 10–40 Mbar (1–4 TPa) regime. Phys. Rev. Lett. 80, 1248.CrossRefGoogle Scholar
Collins, G.W., Da Silva, L.B., Celliers, P., Gold, D.M., Foord, M.E., Wallace, R.G., Ng, A., Weber, S.V., Budil, K.S. & Cauble, R. (1998). Measurements of the equation of state of deuterium at the fluid insulator-metal transition. Sci. 281, 1178.CrossRefGoogle ScholarPubMed
Cook, R.C., Kozioziemski, B.J., Nikroo, A., Wilkens, H.L., Bhandarkar, S., Forsman, A.C., Haan, S.W., Hoppe, M.L., Huang, H., Mapoles, E., Moody, J.D., Sater, J.D., Seugling, R.M., Stephens, R.B., Takagi, M. & Xu, H.W. (2008). National Ignition Facility target design and fabrication. Laser Part. Beams 26, 479487.CrossRefGoogle Scholar
Cuneo, M.E., Sinars, D.B., Bliss, D.E., Waisman, E.M., Porter, J.L., Stygar, W.A., Lebedev, S.V., Chit-tenden, J.P., Sarkisov, G.S. & Afeyan, B.B. (2005). Direct Experimental evidence for current-transfer mode operation of nested tungsten wire arrays at 16 19 MA. Phys. Rev. Lett. 94, 225003.CrossRefGoogle ScholarPubMed
Fraenkel, M., Zigler, A., Faenov, A.Ya. & Pikuz, T.A. (1999). Large-field high-resolution X-ray monochromatic microscope, based on spherical crystal and high-repetition-rate femtosecond laser-produced plasma. Phys. Scripta 59, 246249.CrossRefGoogle Scholar
Ghoranneviss, M., Malekynia, B., Hora, H., Miley, G.H. & He, X. (2008). Inhibition factor reduces fast ignition threshold for laser fusion using nonlinear force driven block acceleration. Laser Part. Beams 26, 105111.CrossRefGoogle Scholar
Hammel, B.A., Griswold, D., Landen, O.L., Perry, T.S., Remington, B.A., Miller, P.L., Peyser, T.A. & Kilkenny, J.D. (1993). X-ray radiographic measurements of radiation-driven shock and interface motion in solid density material. Phys. Fluids B 5, 2259.CrossRefGoogle Scholar
Hammel, B.A., Kilkenny, J.D., Munro, D., Remington, B.A., Kornblum, H.N., Perry, T.S., Phillion, D.W. & Wallace, R.J. (1994). X-ray radiographic imaging of hydrodynamic phenomena in radiation-driven materials—Shock propagation, material compression, and shear flow. Phys. Plasmas 1, 1662.CrossRefGoogle Scholar
Hoffmann, D.H.H., Bock, R., Faenov, A.Ya., Funk, U., Geissel, M., Neuner, U., Pikuz, T.A., Rosmej, F., Roth, M., Suss, W., Tahir, N. & Tauschwitz, A. (2000). Plasma physics with intense laser and ion beams. Nucl. Instr. Meth. Phys. Res. B161–163, 918.CrossRefGoogle Scholar
Hora, H. & Hoffmann, D.H.H. (2008). Using petawatt laser pulses of picosecond duration for detailed diagnostics of creation and decay processes of B-mesons in the Lhc. Laser Part. Beams 26, 503505.CrossRefGoogle Scholar
Hora, H. (2007). New Aspects For Fusion Energy Using Inertial Confinement. Laser Part. Beams 25, 3745.CrossRefGoogle Scholar
King, J.A., Akli, K.U., Freeman, R.R., Green, G., Hatchett, S.P., Hey, D., Jamangi, P., Key, M.H., Koch, J., Lancaster, K.L., Ma, T., MacKinnon, A.J., MacPhee, A., Norreys, P.S., Patel, P.K., Phillips, T., Stephens, R.B., Theobald, W., Town, R.P.J., Van Woerkom, L., Zhang, B. & Beg, F.N. (2009). Studies on the transport of high intensity laser-generated hot electrons in cone coupled wire targets. Phys. Plasmas 16, 020701.CrossRefGoogle Scholar
Koch, J.A., Landen, O.L., Barbee, T.W. Jr., Celliers, P., Da Silva, L.B., Glendinning, S.G., Hammel, B.A., Kalantar, D.H., Brown, C., Seely, J., Bennett, G.R. & Hsing, W. (1998). High-energy X-ray microscopy techniques for laser–fusion plasma research at the National Ignition Facility. Appl. Opt. 37, 17841795.CrossRefGoogle ScholarPubMed
Koch, J.A., Landen, O.L., Hammel, B.A., Brown, C.M., Seely, J. & Aglitskiy, Y. (1999). Recent progress in high-energy, high-resolution X-ray imaging techniques for application to the National Ignition Facility. Rev. Sci. Instrum. 70, 525529.CrossRefGoogle Scholar
Le Pape, S., Macphee, A., Hey, D., Patel, P., Mackinnon, A., Key, M., Pasley, J., Wei, M., Chen, S., Ma, T., Beg, F., Alexander, N., Stephens, R., Offerman, D., Link, A., Lynn Van-Woerkom, A. & Freeman, R. (2008). Density measurement of shock compressed foam using two-dimensional x-ray radiography. Rev. Sci. Instr. 79, 106104.CrossRefGoogle ScholarPubMed
MacPhee, A.G., Akli, K.U., Beg, F.N., Chen, C.D., Chen, H., Clarke, R., Hey, D.C., Freeman, R.R., Kemp, A.J., Key, M.H., King, J.A., Le Pape, S., Link, A., Ma, T.Y., Nakamura, H., Offermann, D.T., Ovchinnikov, V.M., Patel, P.K., Phillips, T.W., Stephens, R.B., Town, R., Tsui, Y.Y., Wei, M.S., Van Woerkom, L.D. & Mackinnon, A.J. (2008). Diagnostics for fast ignition science. Rev. Sci. Instrum. 79, 10F302.CrossRefGoogle ScholarPubMed
Marshall, F.J. & Su, O. (1995). Quantitative measurements with X-ray microscopes in laser–fusion experiments. Rev. Sci. Instrum. 66, 725727.CrossRefGoogle Scholar
Miyanaga, M., Kato, Y. & Yamanaka, C. (1983). Point-source X-ray backlighting for high-density plasma diagnostics. Appl. Phys. Lett. 42, 160164.CrossRefGoogle Scholar
Park, H.-S., Chambers, D.M., Chung, H.-K., Clarke, R.J., Eagleton, R., Giraldez, E., Goldsack, T., Heathcote, R., Izumi, N., Key, M.H., King, J.A., Koch, J.A., Landen, O.L., Nikroo, A., Patel, P.K., Price, D.F., Remington, B.A., Robey, H.F., Snavely, R.A., Steinman, D.A., Stephens, R.B., Stoeckl, C., Storm, M., Tabak, M., Theobald, W., Town, R.P.J., Wickersham, J.E. & Zhang, B.B. (2006). High-energy Kα radiography using high-intensity, short-pulse lasers. Phys. Plasmas 13, 6309.CrossRefGoogle Scholar
Park, H-S., Maddox, B.R., Giraldez, E., Hatchett, S.P., Hudson, T., Izumi, N., Key, M.K., Le Pape, S., MacKinnon, A.J., MacPhee, A.G., Patel, P.K., Phillips, T.W., Remington, B.A., Seely, J.F., Tommasini, R., Town, R., Workman, J. & Brambrink, E. (2008). High-resolution 17–75 keV backlighters for high energy density experiments. Phys. Plasmas 15, 072705.CrossRefGoogle Scholar
Pikuz, S.A., Shelkovenko, T.A., Hammer, D.A., Faenov, A.Ya., Pikuz, T.A., Dyakin, A.Ya. & Romanova, V.M. (1995). High luminosity monochromatic X-ray backlighting using an incoherent plasma source to study extremely dense plasmas. J Exper. Theor. Phys. Lett. 61, 638644.Google Scholar
Pikuz, S.A., Shelkovenko, T.A., Romanova, V.M., Hammer, D.A., Faenov, A.Ya., Dyakin, V.M. & Pikuz, T.A. (1997). High luminosity monochromatic X-ray backlighting using an incoherent plasma source to study extremely dense plasmas. Rev. Sci. Instr. 68, 740744.CrossRefGoogle Scholar
Pikuz, T.A., Faenov, A.Ya, Fraenkel, M., Zigler, A., Flora, F., Bollanti, S., Di Lazzaro, P., Letardi, T., Grilli, A., Palladino, L., Tomassetti, G., Reale, A., Reale, L., Scafati, A., Limongi, T., Bonfigli, F., Alainelli, L. & Sanchez Del Rio, M. (2001). Shadow monochromatic backlighting: Large-field high resolution X-ray shadowgraphy with improved spectral tunability. Laser Part. Beams 19, 285.CrossRefGoogle Scholar
Pikuz, T.A., Faenov, A.Ya., Skobelev, I.Yu., Magunov, A.I., Labate, L., Gizzi, L.A., Galimberti, M., Zigler, A., Baldacchini, G., Flora, F., Bollanti, S., Di Lazzaro, P., Murra, D., Tomassetti, G., Ritucci, A., Reale, A., Reale, L., Francucci, M., Martelluci, S. & Petrocelli, G. (2004 a). High efficient X-ray imaging and backlighting schemes based on the spherically bent crystals. Proceedings of SPIE, 5196, 362374.CrossRefGoogle Scholar
Pikuz, T.A., Faenov, A.Ya., Skobelev, I.Yu., Magunov, A.I., Labate, L., Gizzi, L.A., Galimberti, M., Zigler, A., Baldacchini, G., Flora, F., Bollanti, S., Di Lazzaro, P., Murra, D., Tomassetti, G., Ritucci, A., Reale, A., Reale, L., Francucci, M., Martelluci, S. & Petrocelli, G. (2004 b). Easy spectrally tunable highly efficient X-ray backlighting schemes based on spherically bent crystals. Laser and Particle Beams 22, 289300.CrossRefGoogle Scholar
Ravasio, A., Koenig, M., Le Pape, S., Benuzzi-Mounaix, A., Park, H.S., Cecchetti, C., Patel, P., Schiavi, A., Ozaki, N., Mackinnon, A., Loupias, B., Batani, D., Boehly, T., Borghesi, M., Dezulian, R., Henry, E., Notley, M., Bandyopadhyay, S., Clarke, R. & Vinci, T.V. (2008). Hard x-ray radiography for density measurement in shock compressed matter. Phys. Plasmas 15, 060701.CrossRefGoogle Scholar
Rosmej, F.B., Lee, R.W., Riley, D., Meyer-ter-Vehn, J., Krenz, A., Tschentscher, T., Tauschwitz, A., Tauschwitz, A., Lisitsa, V.S. & Faenov, A.Ya. (2007). Warm dense matter and strongly coupled plasmas created by intense heavy ion beams and XUV-free electron laser: an overview of spectroscopic methods. J. Phys. Confer. Ser. 72, 012007.CrossRefGoogle Scholar
Sanchez del Rio, M., Alianelli, L., Pikuz, T.A. & Faenov, A.Ya. (2001). A novel imaging X-ray microscope based on a spherical crystal. Rev. Sci. Instrum. 72, 32913303.CrossRefGoogle Scholar
Sanchez del Rio, M., Faenov, A.Ya., Dyakin, V.M., Pikuz, T.A., Pikuz, S.A., Romanova, V.M. & Shelkovenko, T.A. (1997). Ray-tracing for a monochromatic X-ray backlighting scheme, based on spherically bent crystal. Phys. Scripta 55, 735.Google Scholar
Sinars, D.B., Bennett, G.R., Wenger, D.F., Cuneo, M.E. & Porter, J.L. (2003 a). Evaluation of bent-crystal X-ray backlighting and microscopy techniques for the Sandia Z-machine. Appl. Opt. 42, 40594071.CrossRefGoogle ScholarPubMed
Sinars, D.B., Cuneo, M.E., Bennett, G.R., Wenger, D.F., Ruggles, L.E., Vargas, M.F., Porter, J.L., Admas, R.G., Johnson, D.W., Keller, K.L., Rambo, P.K., Rovang, D.C., Seamen, H., Simpson, W.W., Smith, I.C. & Speas, S.C. (2003 b). Monochromatic X-ray backlighting of wire-array z-pinch plasmas using spherically bent quartz crystals. Rev. Sci. Instrum. 74, 22022205.CrossRefGoogle Scholar
Stoeckl, C., Anderson, K.S., Betti, R., Boehly, T.R., Delettrez, J.A., Frenje, J.A., Goncharov, V.N., Glebov, V.Yu., Kelly, J.H., MacKinnon, A.J., McCrory, R.L., Meyerhofer, D.D., Morse, S.F.B., Myatt, J.F., Norreys, P.A., Nilson, P.M., Petrasso, R.D., Sangster, T.S., Solodov, A.A., Stephens, R.B., Storm, M., Theobald, W., Yaakobi, B., Waxer, L.J. & Zhou, C.D. (2008). Fast-ignition target design and experimental-concept validation on OMEGA. Plasma Phys. Contr. Fusion 50, 124044.CrossRefGoogle Scholar
Szabo, C.I., Indelicato, P., Gumberidze, A., Holland, G.E., Seely, J.F., Hudson, L.T., Henins, A., Audebert, P., Bastiani-Ceccotti, S., Tabakhoff, E. & Brambrink, E. (2009). X-ray measurements at high-power lasers Relative conversion efficiencies of short pulse laser light into K X-ray radiation in medium to high Z elements. Euro. Phys. J. 169, 243248.Google Scholar
Tahir, N.A., Kim, V.V., Matvechev, A.V., Ostrik, A.V., Shutov, A.V., Lomonosov, I.V., Piriz, A.R., Cela, J.J.L. & Hoffmann, D.H.H. (2008 a). High energy density and beam induced stress related issues in solid graphite Super-FRS fast extraction targets. Laser Part. Beams 26, 273286.CrossRefGoogle Scholar
Tahir, N.A., Weick, H., Shutov, A., Kim, V., Matveichev, A., Ostrik, A., Sultanov, V., Lomonosov, I.V., Piriz, A.R., Cela, J.J.L. & Hoffmann, D.H.H. (2008 b). Simulations of a solid graphite target for high intensity fast extracted uranium beams for the Super-FRS. Laser Part. Beams 26, 411423.CrossRefGoogle Scholar
Tommasini, R., MacPhee, A., Hey, D., Ma, T., Chen, C., Izumi, N., Unites, W., MacKinnon, A., Hatchett, S.P., Remington, B.A., Park, H.C., Springer, P., Koch, J.A., Landen, O.L., Seely, J., Holland, G. & Hudson, L. (2008). Development of backlighting sources for a Compton radiography diagnostic of inertial confinement fusion targets. Rev. Sci. Instr. 79, 10E901.CrossRefGoogle ScholarPubMed
Workman, J., Tierney, T., Evans, S., Kyrala, G. & Benage, J. Jr., (1999). One-dimensional X-ray microscope for shock measurements in high-density aluminum plasmas. Rev. Sci. Instrum. 70, 613616.CrossRefGoogle Scholar