Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-09T10:42:29.637Z Has data issue: false hasContentIssue false

Generation of plasma blocks accelerated by nonlinear forces from ultraviolet KrF laser pulses for fast ignition

Published online by Cambridge University Press:  14 April 2010

R. Sadighi-Bonabi*
Affiliation:
Sharif University of Technology, Teheran, Iran
H. Hora
Affiliation:
University of New South Wales, Sydney, Australia
Z. Riazi
Affiliation:
Amirkabir University of Technology, Teheran, Iran
E. Yazdani
Affiliation:
Amirkabir University of Technology, Teheran, Iran
S.K. Sadighi
Affiliation:
Sharif University of Technology, Teheran, Iran
*
Address correspondence and reprint requests to R. Sadighi-Bonabi, Sharif University of Technology, Teheran, Iran. E-mail: [email protected]

Abstract

Here we report on the production of highly directed ion blocks by plasma interaction of ultraviolet wavelength light produced from a KrF laser. This may support the requirement to produce a fast ignition deuterium-tritium fusion at densities not much higher than the solid state by a single shot petawatt-picoseconds ultraviolet laser pulse. Using double Rayleigh initial density profiles, we are studying numerically how the nonlinear force necessary to accelerate plasma blocks may reach the highest possible thickness. Propagation of plasma blocks and the volumetric hot electrons can be shown in detail. Results of computations for wavelengths of two lasers are compared, which show that the block current density for a KrF laser is approximately four times bigger than for the Nd-glass lasers. This is in good agreement with the number predicted by theory.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Azizi, N., Hora, H., Miley, G.H., Malekynia, B., Ghoranneviss, M. & He, X. (2009). Threshold for laser driven block ignition for fusion energy from hydrogen boron-11'. Laser Part. Beams 27, 201206.CrossRefGoogle Scholar
Badziak, J. (2007). Laser produced ion acceleration. Opt. Electron. Rev. 15 111.Google Scholar
Badziak, J., Glowacz, S., Jablosnki, S., Parys, P., Wolowski, J. & Hora, H. (2004). Production of ultrahigh-current-density ion beams by short-pulse laser-plasma interaction. Appl. Phys. Lett. 85, 30413043.CrossRefGoogle Scholar
Badziak, J., Glowacz, S., Jablonski, S., Parys, P., Wolowski, J. & Hora, H. (2005). Generation of picosecond high-density ion fluxes by skin-layer laser-plasma interaction. Laser Part. Beams 23, 143148.CrossRefGoogle Scholar
Badziak, J., Kozlov, A.A., Makowksi, J., Parys, P., Ryc, L., Wolowski, J., Woryna, E. & Vankov, A.B. (1999). Investigation of ion streams emitted from plasma produced with a high-power picosecond laser. Laser Part. Beams 17, 323329.CrossRefGoogle Scholar
Bessonov, E.G., Gorbunkov, M.V., Ishkhanov, B.S., Kostryukov, P.V., Bin, J.H., Lei, A.L., Yang, X.Q., Huang, L.G., Yu, M.Y., Yu, W. & Tanaka, K.A. (2009). Quasi-monoenergetic proton beam generation from a double-layer solid target using an intense circularly polarized laser. Laser Part. Beams 27, 485490.Google Scholar
Borghesi, M., Mackinnon, A.J., Gaillard, R. & Willi, O. (1999). Absorption of subpicosecond UV laser pulses during interaction with solid target. Phys. Rev. E 60, 73747381.CrossRefGoogle Scholar
Borghesi, M., Kar, S., Romagnani, L., Toncian, T., Antici, P., Audebert, P., Brambrink, E., Ceccheerini, F., Cecchetti, E.F., Fuchs, J., Galimberti, M., Gizzi, L.A., Grismayer, T., Lyseikina, T., Jung, R., Macchi, A., Mora, P., Osterholz, J., Schiavi, A. & Willi, O. (2007). Stochastic heating in ultra high intensity laser-plasma interaction. Laser Part. Beams 25, 169–168.Google Scholar
Boyer, K., Borisov, A.B., Song, X., Zhang, P., Mccorkindale, J.C., Khan, S.F., Dai, Y., Kepple, P.C., Davis, J. & Rhodes, C.K. (2005). Explosive supersaturated amplification on 3d → 2p Xe (L) hollow atom transitions at 2.7–2.9 A. J. Phys. B 38, 30553069.Google Scholar
Cang, Y., Osman, F., Hora, H., Zhang, J., Badziak, J., Wolowski, J., Jungwirth, K., Rohlena, J. & Ullschmied, J. (2005). Computations for nonlinear force driven plasma blocks by picosecond laser pulses for fusion. J. Plasma Phys. 71, 3551.Google Scholar
Cottet, F., Romain, J.P., Fabbro, R. & Faral, B. (1984). Ultrahigh-pressure laser-driven shock-wave experiments at 0.26 µm wavelength. Phys. Rev. Lett. 52, 18841886.CrossRefGoogle Scholar
Denavit, J. (1992). Absorption of high-intensity subpicosecond lasers on solid density targets. J. Phys. Rev. Lett. 69, 3052.Google Scholar
Ghoranneviss, M., Malekynia, B., Hora, H., Miley, G..H. & He, X. (2008). Inhibition factor reduces fast ignition threshold for laser fusion using nonlinear force driven block acceleration. Laser Part. Beams 26, 105111.CrossRefGoogle Scholar
Giulietti, D., Galimberti, M., Giulietti, A., Gizzi, L.A., Labate, L. & Tomassini, P. (2005). The laser-matter interaction meets the high energy physics: Laser-plasma accelerators and bright X/γ-ray sources. Laser Part. Beams 23, 309314.CrossRefGoogle Scholar
Glinec, Y., Faure, J., Pukhov, A., Kiselev, S., Gordienko, S., Mercier, B. & Malka, V. (2005). Generation of quasi-monoenergetic electron beams using ultrashort and ultraintense laser pulses. Laser Part. Beams 23, 161166.Google Scholar
Glowacz, S., Badziak, J., Jablonski, S. & Hora, H. (2004). Numerical modelling of production of ultrahigh current density ion beams by short pulse laser plasma interaction. Czech. J. Phys. 54, C460C467.Google Scholar
Glowacz, S., Hora, H., Badziak, J., Jablonski, S., Cang, Y. & Osman, F. (2006). Analytical description of rippling effect and ion acceleration in plasma produced by a short laser pulse. Laser Part. Beams 24, 1526.CrossRefGoogle Scholar
Hegeler, F., Rose, D.V., Myers, M.C., Sethian, J.D., Giuliani, J.L., Wolford, M.F. & Friedman, M. (2004). Efficient electron beam deposition in the gas cell of the Electra laser. Phys. Plasmas 11, 50105021.Google Scholar
Hoffmann, D.H.H., Blasevic, A., Ni, P., Rosmej, P., Roth, M., Tahir, N.A., Tauschwitz, A., Udera, S., Vanentsov, D., Weyrich, K. & Maron, Y. (2005). Present and future perspectives for high energy density physics with intensive heavy ion and laser beams Laser Part. Beams 23, 4754.CrossRefGoogle Scholar
Holmlid, L., Hora, H., Miley, G. & Yang, X. (2009). Ultrahigh-density deuterium of Rydberg matter clusters for inertial confinement fusion targets. Laser Part. Beams 27, 529532.Google Scholar
Hora, H. (1991). Plasmas at High Temperature and Density. Heidelberg: Springer.Google Scholar
Hora, H. (2009). Laser fusion with nonlinear force driven plasma blocks: Thresholds and dielectric effects. Laser Part. Beams 27, 207222.Google Scholar
Hora, H. (2004). Developments in inertial fusion energy and beam fusion at magnetic confinement. Laser Part. Beams 22, 439449.Google Scholar
Hora, H. (2007). New aspects for fusion energy using inertial confinement. Laser Part. Beams 25, 3746.CrossRefGoogle Scholar
Hora, H., Miley, G.H., Azizi, N., Malkynia, B., Ghoranneviss, M. & He, X. (2009). Nonlinear force driven plasma blocks igniting solid density hydrogen boron: Laser fusion energy without radioactivity. Laser Part. Beams 27, 491496.CrossRefGoogle Scholar
Lifschitz, A.F., Faure, J., Glinec, Y., Malka, V. & Mora, P. (2006). Proposed scheme for compact GeV laser plasma accelerator. Laser Part. Beams 24, 255259.Google Scholar
Malekynia, B., Ghoranneviss, M., Hora, H. & Miley, G.H. (2009). Collective alpha particle stopping for reduction of the threshold for laser fusion using nonlinear force driven plasma blocks. Laser Part. Beams 27, 233241.Google Scholar
Malka, V. & Fritzler, S. (2004). Electron and proton beams produced by ultra short laser pulses in the relativistic regime. Laser Part. Beams 22, 399405.CrossRefGoogle Scholar
Manheimer, W. & Colombant, D. (2007). Effects of viscosity in modeling laser fusion implosions. Laser Part. Beams 25, 541547.Google Scholar
Maslova, Yu.Ya., Shvedunov, V.I., Tunkin, V.G. & Vinogradov, A.V. (2008). Laser-electron generator for X-ray applications in science and technology. Laser Part. Beams 26, 489495.Google Scholar
Obenschain, S.P., Colombant, D.G., Schmitt, A.J., Sethian, J.D. & Mcgeoch, M.W. (2006). Pathway to lower cost high repetition rate ignition facility. Phys. Plasmas 13, 056320.Google Scholar
Payne, S.A., Bibeau, C., Beach, R.J., Bayramian, A., Chanteloup, J.C., Ebbers, C.A., Emanuel, M.A., Nakana, H., Orth, C.D., Rothenberg, J.E., Schaffers, K.I., Seppala, L.G., Skidmore, J.A., Sutton, S.B., Zapata, L.E. & Powell, H.T. (1998). Diode-pumped solid-state lasers for inertial fusion energy. J. Fusion Energy 17, 213217.CrossRefGoogle Scholar
Rayleigh, Lord. (1880) Proc. Roy. Soc. London 11, 51.Google Scholar
Roth, M., Brambrink, E., Audebert, B., Blazevic, A., Clarke, R., Cobble, J., Cowan, T.E., Fernandez, J., Fuchs, J., Geissel, M., Habs, D., Hegelich, M., Karsch, S., Ledingham, K., Neely, D., Ruhl, H., Schlegel, T. & Schreiber, J. (2005). Laser accelerated ions and electron transport in ultra-intense laser matter interaction. Laser Part. Beams 23, 95100.Google Scholar
Sadighi, S.K. & Sadighi-Bonabi, R. (2010). The evaluation of transmutation of hazardous nuclear waste of 90Sr, into valuable nuclear medicine of 89Sr by ultraintense lasers. Laser Part. Beams 27 (In press).Google Scholar
Sadighi-Bonabi, R. & Kokabee, O. (2006). Evaluation of transmutation of 137Cs(γ, n)136Cs using ultra-intense laser in solid targets. Chin.Phys.Lett. 6, 14341436.CrossRefGoogle Scholar
Sadighi-Bonabi, R., Habibi, M. & Yazdani, E. (2009 c). Improving the relativistic self-focusing of intense laser beam in plasma using density transition. Phys. Plasmas 16, 083105.Google Scholar
Sadighi-Bonabi, R., Habibi, M., Yazdani, E. & Lotfi, E. (2009 b). Comment on Plasma Density Ramp for Relativistic Self-focusing of an Intense Laser. J. Opt. Soc. Am. B. 24, 108489.Google Scholar
Sadighi-Bonabi, R., Irani, E., Safaie, B., Imani, Kh., Silatani, M. & Zare, S. (2009 a). Possibility of ultra-intense laser transmutation of 93Zr (γ, n) 92Zr a long-lived nuclear waste into a stable isotope. Energy Conversion and Management.Google Scholar
Sadighi-Bonabi, R., Navid, H.A. & Zobdeh, P. (2009). Observation of quasi mono-energetic electron bunches in the new ellipsoid cavity model. Laser Part. Beams 27, 223231.CrossRefGoogle Scholar
Sadighi-Bonabi, R., Rahmatallahpor, S., Navid, H.A., Lotfi, E., Zobdeh, P., Reiazie, Z., Nik, M.B. & Mohamadian, M. (2009 d). Modification of the energy of mono-energetic electron beam by ellipsoid model for the cavity in the bubble regime. Plasma Phys. 49, 4954.Google Scholar
Sentoku, Y., Cowan, T.E., Kemp, A. & Ruhi, H. (2003). High energy proton acceleration of short laser pulse with dense plasma target. Phys. Plasmas 10, 20092015.Google Scholar
Tabak, M., Hammer, J., Glinsky, M.N., Kruer, W.L., Wilks, S.C., Woodworth, J., Campbell, E.M., Perry, M.D. & Mason, R.J. (1994). Ignition of high-gain with ultra powerful lasers. Phys. Plasmas 1, 16261634.Google Scholar
Ter-Avetisyan, S., Schnurer, M., Polster, R., Nickles, P.V. & Sandner, W. (2008). First demonstration of collimation and monochromatisation of a laser accelerated proton burst. Laser Part. Beams 26, 637642.Google Scholar
Ueda, K.I., Nishioka, H., Kimura, K. & Takuma, H. (1993). Advanced techniques of high-efficiency pulse compression for KrF lasers. Laser Part. Beams 11, 3142.Google Scholar
Yazdani, E., Cang, Y., Sadighi-Bonabi, R., Hora, H. & Osman, F.H. (2009). Layers from initial Rayleigh density profile by directed nonlinear force driven plasma blocks for alternative fast ignition. Laser Part. Beams 27, 149156.Google Scholar
Zobdeh, P., Sadighi-Bonabi, R. & Afarideh, H. (2008). New ellipsoid cavity model for high-intensity laser-plasma interaction. Plasma Devices Oper. 16, 105114.Google Scholar
Zvorykin, V.D., Didenko, N.V., Ionin, A.A., Kholin, I.V., Konyashchenko, A.V., Krokhin, O.N., Levchenko, A.O., Mavritski, A.O., Mesyats, G.A., Molchanov, A.G., Rogulev, M.A., Scleznev, L.V., Sinitsyn, D.V., Tenyakov, S.Yu., Ustinovski, N.N. & Zayarnyi, D.A. (2007). GARPUN-MTW: A hybrid Ti:Sapphire/KrF laser facility for simultaneous amplification of subpicosecond/nanosecond pulses relevant to fast-ignition ICF concept. Laser Part. Beams 25, 435451.Google Scholar