Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-11T04:31:35.719Z Has data issue: false hasContentIssue false

Generation of flat-top waveform in the time domain based on stimulated Brillouin scattering using medium with short phonon lifetime

Published online by Cambridge University Press:  18 September 2008

W.L.J. Hasi
Affiliation:
Institute of Opto-Electronics, Harbin Institute of Technology, Harbin, China
S. Gong
Affiliation:
Institute of Opto-Electronics, Harbin Institute of Technology, Harbin, China
Z.W. Lu*
Affiliation:
Institute of Opto-Electronics, Harbin Institute of Technology, Harbin, China
D.Y. Lin
Affiliation:
Institute of Opto-Electronics, Harbin Institute of Technology, Harbin, China
W.M. He
Affiliation:
Institute of Opto-Electronics, Harbin Institute of Technology, Harbin, China
R.Q. Fan
Affiliation:
Institute of Opto-Electronics, Harbin Institute of Technology, Harbin, China
*
Address correspondence and reprint requests to: Zhiwei Lu, Institute of Opto-Electronics, Harbin Institute of TechnologyP.O. Box 309, Harbin 150001, China. E-mail: [email protected]

Abstract

A method of generating flat-top waveform in the time-domain based on stimulated Brillouin scattering (SBS) using medium with short phonon lifetime is proposed. In theory, the transmitted pulse is simulated in the case of several media with different phonon lifetime. In experiment, FC-72 and HT-270, which differ significantly in the phonon lifetime, are exploited in the experiment. Both the theoretical and experimental results indicate that, when choosing medium with short phonon lifetime, the top is almost a platform, while there is a peak in the front and a platform thereafter when choosing medium with long phonon lifetime.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Boyd, R.W. & Rzazewski, K. (1990). Noise initiation of stimulated Brillouin scattering. Phys. Rev. A 42, 55145521.CrossRefGoogle ScholarPubMed
Cao, L.F., Uschmann, I., Zamponi, F., Kampfer, T., Fuhrmann, A., Forster, E., Holl, A., Redmer, R., Toleikis, S., Tschentscher, T. & Glenzer, S.H. (2007). Space-time characterization of laser plasma interactions in the warm dense matter regime. Laser Part. Beams 25, 239244.CrossRefGoogle Scholar
Erokhin, A.I., Kovalev, V.I. & Faizullov, F.S. (1986). Determination of the parameters of a nonlinear response of liquids in an acoustic resonance region by the method of nondegenerate four-wave interaction. Sov. J. Quan. Electron. 16, 872877.CrossRefGoogle Scholar
Godwal, Y., Taschuk, M.T., Lui, S.L., Tsui, Y.Y. & Fedosejevs, R. (2008). Development of laser-induced breakdown spectroscopy for microanalysis applications. Laser Part. Beams 26, 95103.CrossRefGoogle Scholar
Hasi, W.L.J., Lu, Z.W., Gong, S., Liu, S.J., Li, Q. & He, W.M. (2008 b). Investigation on new SBS media of perfluoro-compound and perfluoropolyether with low absorption coefficient and high power-load ability. Appl. Opt. 47, 10101014.CrossRefGoogle ScholarPubMed
Hasi, W.L.J., Lu, Z.W., Li, Q. & He, W.M. (2007 a). Research on the enhancement of power-load of two-cell SBS system by choosing different media or mixture medium. Laser Part. Beams 25, 207210.CrossRefGoogle Scholar
Hasi, W.L.J., Lu, Z.W., Li, Q. & He, W.M. (2007 c). A method to measure the Brillouin frequency shift of the medium through Brillouin amplification ratio. Chin. Phys. 16, 154158.Google Scholar
Hasi, W.L.J., Lu, Z.W., Li, Q., Ba, D.X. & He, W.M. (2007 b). Study on two-cell stimulated Brillouin scattering system with mixture medium. Sci. China Ser. G 50, 144151.CrossRefGoogle Scholar
Hasi, W.L.J., Lu, Z.W., Liu, S.J., Li, Q., Yin, G.H. & He, W.M. (2008 a). Generation of flat-top waveform in the time domain based on stimulated Brillouin scattering. Appl. Phys. B 90, 503506.CrossRefGoogle Scholar
Hoffnagle, J.A. & Jefferson, C.M. (2000). Design and performance of a refractive optical system that converts a Gaussian to a flattop beam. Appl. Opt. 39, 54885499.CrossRefGoogle ScholarPubMed
Kanabe, T., Nakatsuka, M., Kato, Y. & Yamanaka, C. (1986). Coherent stacking of frequency-chirped pulses for stable generation of controlled pulse shapes. Opt. Commun. 58, 206210.CrossRefGoogle Scholar
Kong, H.J., Lee, S.K. & Lee, D.W. (2005 a). Beam combined laser fusion driver with high power and high repetition rate using stimulated Brillouin scattering phase conjugation mirrors and self-phase-locking. Laser Part. Beams 23, 5559.CrossRefGoogle Scholar
Kong, H.J., Lee, S.K. & Lee, D.W. (2005 b). Highly repetitive high energy power beam combination laser: IFE laser driver using independent phase control of stimulated Brillouin scattering phase conjugate mirrors and pre-pulse technique. Laser Part. Beams 23, 107111.CrossRefGoogle Scholar
Kong, H.J., Yoon, J.W., Beak, D., Shin, J.S., Lee, S.K. & Lee, D.W. (2007). Laser fusion driver using stimulated Brillouin scattering phase conjugate mirrors by a self-density modulation. Laser Part. Beams 25, 225238.CrossRefGoogle Scholar
Kong, H.J., Yoon, J.W., Shin, J.S., Beak, D.H. & Lee, B.J. (2006). Long term stabilization of the beam combination laser with a phase controlled stimulated Brillouin scattering phase conjugation mirrors for the laser fusion driver. Laser Part. Beams 24, 519523.CrossRefGoogle Scholar
Laska, L., Badziak, J., Boody, F.P., Gammino, S., Jungwirth, K., Krasa, J., Krousky, E., Parys, P., Pfeifer, M., Rohlena, K., Ryc, L., Skala, J., Torrisi, L., Ullschmied, J. & Wolowski, J. (2007). Factors influencing parameters of laser ion sources. Laser Part. Beams 25, 199205.CrossRefGoogle Scholar
Lin, Q. & Wang, L. (2000). Optical resonators producing partially coherent flat-top beams. Opt. Commun. 175, 295300.CrossRefGoogle Scholar
Lontano, M., Passoni, M., Riconda, C., Tikhonchuk, V.T. & Weber, S. (2006). Electromagnetic solitary waves in the saturation regime of stimulated Brillouin backscattering. Laser Part. Beams 24, 125129.CrossRefGoogle Scholar
Lu, Z.W., Hasi, W.L.J., Gong, H.P., Li, Q. & He, W.M. (2006). Generation of flat-top waveform by double optical limiting based on stimulated Brillouin scattering. Opt. Express 14, 54975501.CrossRefGoogle ScholarPubMed
Lu, Z.W., Lu, Y.L. & Yang, J. (2003). Optical limiting effect based on stimulated Brillouin scattering in CCl4. Chin. Phys. 12, 507513.Google Scholar
Meister, S., Riesbeck, T. & Eichler, H.J. (2007). Glass fibers for stimulated Brillouin scattering and phase conjugation. Laser Part. Beams 25, 1521.CrossRefGoogle Scholar
Mulser, P. & Schneider, R. (2004). On the inefficiency of hole boring in fast ignition. Laser Part. Beams 22, 157162.CrossRefGoogle Scholar
Park, H., Lim, C., Yoshida, H. & Nakatsuka, M. (2006). Measurement of stimulated Brillouin scattering characteristics in heavy fluorocarbon liquids and perfluoropolyether liquids. Jpn. J. Appl. Phys. 45, 50735075.CrossRefGoogle Scholar
Wang, S.Y., Lu, Z.W., Lin, D.Y., Ding, L. & Jiang, D.B. (2007). Investigation of serial coherent laser beam combination based on Brillouin amplification. Laser Part. Beams 25, 7983.CrossRefGoogle Scholar
Wang, Y.L., Xu, W., Zhou, Y., Chu, L.Z. & Fu, G.S. (2007). Influence of pulse repetition rate on the average size of silicon nanoparticles deposited by laser ablation. Laser Part. Beams 25, 913.CrossRefGoogle Scholar
Wieger, V., Strassl, M. & Wintner, E. (2006). Pico-and microsecond laser ablation of dental restorative materials. Laser Part. Beams 24, 4145.CrossRefGoogle Scholar
Wolowski, J., Badziak, J., Czarnecka, A., Parys, P., Pisarek, M., Rosinski, M., Turan, R. & Yerci, S. (2007). Application of pulsed laser deposition and laser-induced ion implantation for formation of semiconductor nano-crystallites. Laser Part. Beams 25, 6569.CrossRefGoogle Scholar
Yen, W.C., Huang, C.T., Liu, H.P. & Lee, L.P. (1997). A Nd: YAG laser with a flat-top beam profile and constant divergence. Opt. & Technol. 29, 5761.Google Scholar
Yoshida, H., Fujita, H., Nakatsuka, M., Ueda, T. & Fujinoki, A. (2007). Temporal compression by stimulated Brillouin scattering of Q-switched pulse with fused-quartz and fused-silica glass from 1064 nm to 266 nm wavelength. Laser Part. Beams 25, 481488.CrossRefGoogle Scholar
Yoshida, H., Kmetik, V., Fujita, H., Nakatsuka, M., Yamanaka, T. & Yoshida, K. (1997). Heavy fluorocarbon liquids for a phase-conjugated stimulated Brillouin scattering mirror. Appl. Opt. 36, 37393744.CrossRefGoogle ScholarPubMed