Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-24T13:55:20.611Z Has data issue: false hasContentIssue false

Fundamental difference between picosecond and nanosecond laser interaction with plasmas: Ultrahigh plasma block acceleration links with electron collective ion acceleration of ultra-thin foils

Published online by Cambridge University Press:  09 March 2012

Heinrich Hora*
Affiliation:
Department of Theoretical Physics, University of New South Wales, Sydney, Australia
*
Address correspondence and reprint requests to: Heinrich Hora, Department of Theoretical Physics, University of New South Wales, Sydney 2052Australia. E-mail: [email protected]

Abstract

Arguments are discussed on how ion energy measurements from ultra-thin diamond irradiation with 45 fs laser pulses of 26 terawatt power may be related to the ultra-high acceleration of plasma blocks where the significance of the highly efficient direct conversion of laser radiation into mechanical motion of ions or plasma blocks is dominated by nonlinear (ponderomotive) forces in fundamental contrast to thermo-kinetic dominated interaction with ns laser pulses.

Type
Short Communication
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alfven, H. (1981). Cosmic Plasma Dordrecht: Reidel.CrossRefGoogle Scholar
Andreev, A.A., Steinke, S., Sokolnik, T., Schnürer, M., Ter Avetsiyan, S., Platonov, K.Y. & Nikcles, P.V. (2009). Optimal electron acceleration from ultra thin foils irradiated by a profiles laser pulse or relativistic intensity. Plasma Phys. 16, 013103.CrossRefGoogle Scholar
Boreham, B.W. & Hora, H. (1978). Debye length discrimination of nonlinear laser forces acting on electrons in tenuous plasmas. Phys. Rev. Lett. 42, 776779.CrossRefGoogle Scholar
Campbell, E.M. (2005) High intensity laser-plasma interaction and applications to inertial fusion and high energy density physics. Doctor of Science thesis. Australia: University of Western Sydney.Google Scholar
Földes, I.B., Bakos, J.S., Gal, K., Juhasz, Z., Kedves, M.A., Kocsis, G., Szatmari, S. & Veres, G. (2000). Properties of high harmonics generated by ultrashort UV laser pulses on solid surfaces. Laser Phys. 10, 264269.Google Scholar
Hora, H. (1981). Physics of Laser Driven Plasmas. New York: John Wiley.Google Scholar
Hora, H. (1991). Plasmas at High Temperature and Density. Heidelberg: Springer.Google Scholar
Hora, H. (2009). Laser fusion with nonlinear force driven plasma blocks: Thresholds and dielectric effects. Laser Part. Beams 27, 207222.CrossRefGoogle Scholar
Hora, H., Lalousis, P. & Eliezer, S. (1984). Analysis of the inverted double-layers produced by nonlinear forces in laser-produced plasmas. Phys. Rev. Lett.53, 16501652.CrossRefGoogle Scholar
Hora, H., Badziak, J., Read, M.N., Li, Yu-Tong, Liang, Tian-Jiao, Liu Hong, ShengZheng-Ming, Zhang, Jie, Osman F., Miley, G.H., Zhang, Weiyan, He, Xianto, Peng, Hanscheng, Glowacz, S., Jablonski, S., Wolowski, J., Skladanowski, Z., Jungwirth, K., Rohlena, K. & Ullschmied, J. (2007). Fast ignition by laser driven beams of very high intensity Phys. Plasmas 14, 072701/1–7.CrossRefGoogle Scholar
Hora, H., Miley, G.H., Ghornanneviss, M., Malekynia, B., Azizi, N. & He, X. (2010). Fusion energy without radioactivity: laser ignition of solid density hydrogen-boron(11) fuel. Ener. Environ. Sci. 3, 479486.CrossRefGoogle Scholar
Hora, H., Miley, G.H., Laslousis, P., Flippo, K., Gaillard, S.A., Offermann, D., Fernandes, J., Yang, X., Murakami, M., Castillo, C., Stait-Gardner, T., Le Cornu, B. & Pozo, J. (2011). Ultrahigh acceleration of plasma blocks from direct converting laser energy into motion by nonlinear forces. Proc. of the International Quantum Electronics Conference. 28 August-1 September 2011, Sydney, pp. 878–880.CrossRefGoogle Scholar
Hora, H. (2011). Distinguished celebration for Professor George H. Miley by the University of Illinois, Urbana, Illinois, USA. Laser Part. Beams 29, 275278.Google Scholar
Hora, H., Miley, G.H., Flippo, K., Lalousis, P., Castillo, R., Yang, X., Malekynia, B. & Ghoranneviss, M. (2011 b). Review about acceleration of plasma by nonlinear forces from picoseconds laser pulses and block generated fusion flame in uncompressed fuel. Laser Part. Beams 29, 353364.CrossRefGoogle Scholar
Kalashnikov, M.P., Nickles, P.V., Schlegel, T., Schnuerer, M., Billhardt, F., Will, I. & Sandner, W. (1994). Dyanmics of laser-plasma interaction at 1018 W/cm2. Phys. Rev. Lett.73, 260263.CrossRefGoogle Scholar
Karasik, M., Weaver, J.L., AglitskiyWatari, T. Watari, T., Arikawa, Y., Sakaiya, T., Oh, J., Velikowitch, A.L., Zaleasak, S.T., Bates, J.W., Obenschain, S.Po., Schmitt, A.J., Murakami, M. & Azechi, H.Y. (2010). Acceleration to high velocities and heating by impact using Nike KrF Laser. Phys. Plasmas 17, 056317.CrossRefGoogle Scholar
Kulsrud, R. (1983). Book Review: Hannes Alfven. Phys. Today 34, 56.Google Scholar
Krausz, F. & Ivanov, M. (2009). Attosecond physics. Rev. Mod. Phys. 81, 163264.CrossRefGoogle Scholar
Lalousis, P. & Hora, H. (1983). First direct electron and ion fluid computation of high electrostatic fields in dense inhomogeneous plasmas with subsequent nonlinear laser interaction. Laser Part. Beams 1, 283304.CrossRefGoogle Scholar
Lalousis, P., Földes, I.B. & Hora, H. (2012). Ultrahigh acceleration of plasma by picosecond terawatt laser pulses for fast ignition of fusion. Laser Part. Beams doi:10.1017/S0263034611000875.CrossRefGoogle Scholar
Mako, F. & Tajima, T. (1984). Collective ion acceleration by a reflexing electro-beam-model and scaling. Phys. Fluids 17, 1850.Google Scholar
Mora, P. (2003). Plasma expansion into vacuum. Phys. Rev. Lett. 90, 185002.CrossRefGoogle ScholarPubMed
Mourou, G. & Tajima, T. (2002). Ultraintense lasers and their applications. Inertial Fusion Science and Applications 2001 (Tanaka, V.R., Meyerhofer, D.D., Meyer-ter-Vehn, J., Eds.), Paris: Elsevier, pp. 831839.Google Scholar
Perry, M.D. & Mourou, G. (1994). Terawatt to petawatt subpicosecond lasers. Sci. 264, 917.Google ScholarPubMed
Schlüter, A. (1950). Dynamik des plasmas – 1. Grundgleichungen, plasma in gekreutzten feldern (Dynamics of plasmas – 1: Basic equations. Plasmas in crossed fields) Zeitschrift f. Naturforschung A 5, 7278.CrossRefGoogle Scholar
Sauerbrey, R. (1996). Acceleration of femtosecond laser produced plasmas. Phys. Plasmas 3, 47124716.CrossRefGoogle Scholar
Steinke, S., Hening, A., Schnürer, M., Sokollik, T., Nickles, P.V., Jung, D., Kiefer, D., Hörlein, R., Schreiber, J., Tajima, T., Yan, X.Q., Hegelich, M., Meyer-Ter-Vehn, J., Sandner, W. & Habs, D. (2010). Efficient ion acceleration by collective laser-driven electron dynamics with ultra-thin foil targets. Laser Part. Beams 28, 215221.CrossRefGoogle Scholar
Tabak, M., Hammer, J., Glinsky, M.N, Kruer, W.L., Wilks, S.C, Woodworth, J., Campbell, E.M., Perry, M.D. & Mason, R.J. (1994). Ignition of high-gain with ultra powerfull lasers. Phys. Plasmas 1, 16261634.CrossRefGoogle Scholar
Zhang, P., He, J.T., Chen, D.B., Li, Z.H., Zhang, Y., Wong, Lang, Li, Z.H., Feng, B.H., Zhang, D.X., Tang, X.W. & Zhang, J. (1998). X-ray emission from ultraintense-ultrashort laser irradiation. Phys. Rev. E 57, 3746–375.CrossRefGoogle Scholar