Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-01T02:28:18.493Z Has data issue: false hasContentIssue false

Formation mechanisms of laboratory double layers in triple plasma devices

Published online by Cambridge University Press:  09 March 2009

Chung Chan
Affiliation:
The Center for Electromagnetics Research and The Department of Electrical and Computer Engineering, Northeastern University, Boston, MA 02115

Abstract

The evolution processes of double-layers have been studied in a series of laboratory experiments using a triple plasma device. It was found that the existence of virtual cathode type potential wells at the electron injection boundary was the dominant triggering mechanism. The rapid growth of the potential well led to collisionless ion trapping and the establishment of the necessary trapped ion population. For double layers with small potential drops, collisionless ion trapping actually induced ion–ion streaming instabilities and the formation of ion phase-space vortices. In this regime, the system often exhibited relaxation type oscillations which corresponded to the disruption and the recovery of the double layers.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brown, S. C. 1966 Basic Data of Plasma Physics, MIT Press, Cambridge, MA.Google Scholar
Chan, C., Cho, M. H., Hershkowitz, N. & Intrator, T. 1984 Phys. Rev. Lett. 52, 1782.CrossRefGoogle Scholar
Hershkowitz, N., Payne, G. & Chan, C. 1981 Plasma Phys. 23, 910.CrossRefGoogle Scholar
Hollenstein, Ch., Guyot, M. & Weibel, E. S. 1980 Phys. Rev. Lett. 45, 2110.CrossRefGoogle Scholar
Iizuka, S., Saeki, K., Sato, N. & Hatta, Y. 1979 Phys. Rev. Lett. 43, 1404; Saeki K. Iizuka S. & Sato N. 1980 Phys. Rev. Lett. 45, 1853.CrossRefGoogle Scholar
Leung, P., Wong, A. Y. & Quon, B. H. 1980 Phys. Fluids, 23, 992.CrossRefGoogle Scholar
Pecseli, H. L. & Trulsen, J. 1982 Phys. Rev. Lett. 48, 1335; Pecselli H. L., Armstrong R. J. & Trulsen J. 1980 Phys. Rev. Lett. 81A, 386.CrossRefGoogle Scholar
Quon, B. H. & Wong, A. Y. 1976 Phys. Rev. Lett. 37, 1393.CrossRefGoogle Scholar
Saeki, K., Iizuka, S. & Sato, N. 1980 Phys. Rev. Lett. 45, 1853.CrossRefGoogle Scholar
Sato, T. & Okuda, H. 1980 Phys. Rev. Lett. 44, 740.CrossRefGoogle Scholar
Singh, N. & Schunk, R. W. 1983 Phys. Fluids, 26, 2781.CrossRefGoogle Scholar
Temerin, M.Cèrny, K., Lotko, W. & Mozer, F. S. 1982 Phys. Rev. Lett. 48, 1175.CrossRefGoogle Scholar