Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-29T13:46:34.986Z Has data issue: false hasContentIssue false

Finite-element simulation code for high-power magnetohydrodynamics

Published online by Cambridge University Press:  09 March 2009

Stanley Humphries Jr
Affiliation:
Field Precision, Albuquerque, NM 87192USA
Carl Ekdahl
Affiliation:
Los Alamos National LaboratoryLos Alamos, NM 87545USA

Abstract

We describe the mathematical basis and organization of Crunch, a ID shock-hydrodynamics code to analyze pulsed-power experiments at Los Alamos National Laboratory. The program uses finite-element methods that preserve stability during material collisions and shock convergence on axis. It handles coupled calculations of nonlinear magnetic diffusion to simulate imploding liners. These calculations may be driven by multiple current waveforms or a selfconsistent current variation derived from a pulsed-power generator model. Crunch incorporates elastic material contributions and calculates element break and melt points. The primary goal in program development was effective use by experimentalists. Crunch is controlled by a streamlined script language and runs on standard personal computers. An interactive graphical postprocessor expedites analysis of results. To support the program we have assembled data resources in machine-independent format including Sesame equation-of-state tables, a material strength library and a library of temperature-dependent conductivities.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abdallah, J. et al. 1980 Los Alamos National Laboratory Report LA-8209.Google Scholar
Alikhanov, S.G. & Konkashbaev, I.K. 1973 Nucl. Fusion 14, 3.Google Scholar
Bennet, B.I. et al. 1978 Los Alamos National Laboratory Report LA-7130.Google Scholar
Chernychev, V.K. et al. 1987 Megagauss Technology and Pulsed Power Applications, Fowler, C.M. et al. eds. (Plenum Press, New York).Google Scholar
Clover, M.R. 1993 Los Alamos National Laboratory Report X6:MRC–93–126 (unpublished).Google Scholar
Courant, R. & Friedrichs, K.O. 1991 Supersonic Flow and Shock Waves (Springer-Verlag, New York), p. 138.Google Scholar
Dufort, E.C. & Frankiel, S.P. 1953 Math. Tables and Other Aids to Comp. 7, 135.Google Scholar
Ekdahl, C. & Humphries, S. 1998 In Seventh Int. Conf. on Megagauss Magnetic Field Generation and Related Topics (Sarov, Russia) (in press).Google Scholar
Fung, C. 1965 Foundations of Solid Mechanics (Prentice-Hall, Englewood Cliffs, NJ).Google Scholar
Hockaday, M.P. et al. 1998 In Proc. of 10th IEEE Int. Pulsed Power Conf. (in press).Google Scholar
Huddleston, J.V. 1961 Introduction to Engineering Mechanics (Addison-Wesley, Reading,MA).Google Scholar
Humphries, S. 1997 Field Solutions on Computers (CRC Press,Boca Raton, FL), Chap. 12.Google Scholar
Humphries, S. & Ekdahl, C. 1996 IEEE Trans. Plasma Sci. 24, 1334.CrossRefGoogle Scholar
Lee, Y.T. & More, R.M. 1984 Phys. Fluids 27, 1273.CrossRefGoogle Scholar
Lindemuth, I.A. 1985 J. Appl. Phys. 57, 4447.CrossRefGoogle Scholar
Lyon, S.P. & Johnson, J.D. (eds.) 1992 Los Alamos National Laboratory Report LA-UR–92–3407.Google Scholar
Neumann, J. & Richtmyer, R.D. 1950 J. Appl. Phys. 21, 232.CrossRefGoogle Scholar
Parker, J. 1993 A Primer on Liner Implosions (Los Alamos National Laboratory, Los Alamos, NM) (unpublished).Google Scholar
Parsons, W.M. et al. 1997 IEEE Trans. Plasma Sci. 25, 205.CrossRefGoogle Scholar
Potter, D. 1973 Computational Physics (Wiley, New York), Chap. 9.Google Scholar
Richtmyer, R.D. & Morton, K.W. 1967 Difference Methods for Initial-Value Problems, 2nd ed. (Interscience, New York).Google Scholar
Rinker, G.A. 1988 Phys. Rev. A 37, 1284.CrossRefGoogle Scholar
Sherwood, A.R. et al. 1980 Megagauss Physics and Technology, Turchi, P.J., ed. (Plenum Press, New York), p. 391.CrossRefGoogle Scholar
Spitzer, L. & Harm, R. 1953 Phys. Rev. 89, 977.CrossRefGoogle Scholar
Steinberg, D.J. 1996 Lawrence Livermore Laboratory Report UCRL-MA-106439.Google Scholar
Struve, K.W. et al. 1998 In Proc. of 1997 Pulsed Power Conf. (in press).Google Scholar
Tucker, T.J. & Toth, R.P. 1975 Sandia National Laboratories Report SAND–75–0042.Google Scholar
Turchi, P.J. et al. 1980 Megagauss Physics and Technology, Turchi, P.J., ed. (Plenum Press, New York), p. 375.CrossRefGoogle Scholar
Zel'dovich, Ya. B. & Raizer, Yu. P. 1966 Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Academic Press, New York), p. 93.Google Scholar