Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2025-01-05T22:52:38.089Z Has data issue: false hasContentIssue false

Experimental and numerical study of ultra-short laser-produced collimated Cu K α X-ray source

Published online by Cambridge University Press:  03 July 2017

R. Rathore*
Affiliation:
Laser Plasma Section, Raja Ramanna Centre for Advanced Technology, Indore 452013, Madhya Pradesh, India
V. Arora
Affiliation:
Laser Plasma Section, Raja Ramanna Centre for Advanced Technology, Indore 452013, Madhya Pradesh, India
H. Singhal
Affiliation:
Laser Plasma Section, Raja Ramanna Centre for Advanced Technology, Indore 452013, Madhya Pradesh, India
T. Mandal
Affiliation:
Laser Plasma Section, Raja Ramanna Centre for Advanced Technology, Indore 452013, Madhya Pradesh, India Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094, Maharashtra, India
J.A. Chakera
Affiliation:
Laser Plasma Section, Raja Ramanna Centre for Advanced Technology, Indore 452013, Madhya Pradesh, India Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094, Maharashtra, India
P.A. Naik
Affiliation:
Laser Plasma Section, Raja Ramanna Centre for Advanced Technology, Indore 452013, Madhya Pradesh, India Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094, Maharashtra, India
*
*Address correspondence and reprint requests to: R. Rathore, Laser Plasma Section, Raja Ramanna Centre for Advanced Technology, Indore 452013 MP, India. E-mail: [email protected]

Abstract

K α X-ray sources generated from the interaction of ultra-short laser pulses with solids are compact and low-cost source of ultra-short quasi-monochromatic X-rays compared with synchrotron radiation source. Development of collimated ultra-short K α X-ray source by the interaction of 45 fs Ti:sapphire laser pulse with Cu wire target is presented in this paper. A study of the K α source with laser parameters such as energy and pulse duration was carried out. The observed K α X-ray photon flux was ~2.7 × 108 photons/shot at the laser intensity of ~2.8 × 1017 W cm−2. A model was developed to analyze the observed results. The K α radiation was coupled to a polycapillary collimator to generate a collimated low divergence (0.8 mrad) X-ray beam. Such sources are useful for time-resolved X-ray diffraction and imaging studies.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arora, V., Naik, P.A., Chakera, J.A., Bagchi, S., Tayyab, M. & Gupta, P.D. (2014 a). Study of 1–8 keV K-α X-ray emission from high intensity femtosecond laser produced plasma. AIP Adv. 4, 047106.CrossRefGoogle Scholar
Arora, V., Naik, P.A., Chakravarty, U., Singhal, H., Rao, B.S., Chakera, J.A., Singh, M.P. & Gupta, P.D. (2014 b). A comparative study of the inner-shell and the ionic line radiation from ultra-short laser-produced magnesium plasma. Phys. Scr. 89, 115601.Google Scholar
Arora, V., Vora, H.S., Chakera, J.A., Tayyab, M., Naik, P.A. & Gupta, P.D. (2013). Dispersion-less spectrograph for absolute measurement of multi keV X-ray flux from high intensity laser produced plasmas. J. Instrum. 8, P01010.Google Scholar
Bargheer, M., Zhavoronkov, N., Bruch, R., Legall, H., Stiel, H., Woerner, M. & Elsaesser, T. (2005). Comparison of focusing optics for femtosecond X-ray diffraction. Appl. Phys. B 80, 715719.Google Scholar
Beg, F.N., Bell, A.R., Dangor, A.E., Danson, C.N., Fews, A.P., Glinsky, M.E., Hammel, B.A., Lee, P., Norreys, P.A. & Tatarakis, M. (1997). A study of picosecond laser–solid interactions up to 1019 W cm−2. Phys. Plasmas 4, 447457.Google Scholar
Bonvalet, A., Darmon, A., Lambry, J.-C., Martin, J.-L. & Audebert, P. (2006). 1 kHz tabletop ultrashort hard x-ray source for time-resolved x-ray protein crystallography. Opt. Lett. 31, 2753.CrossRefGoogle ScholarPubMed
Chakera, J.A., Ali, A., Tsui, Y.Y. & Fedosejevs, R. (2008). A continuous kilohertz CuKa source produced by submillijoule femtosecond laser pulses for phase contrast imaging. Appl. Phys. Lett. 93, 261501.Google Scholar
Curcio, A., Anania, M., Bisesto, F.G., Faenov, A., Ferrario, M., Galletti, M., Giulietti, D., Kodama, R., Petrarca, M., Pikuz, T. & Zigler, A. (2016). Characterization of X-ray radiation from solid Sn target irradiated by femtosecond laser pulses in the presence of air plasma sparks. Laser Part. Beams 34, 533538.Google Scholar
Dorchies, F., Fedorov, N. & Lecherbourg, L. (2015). Experimental station for laser-based picosecond time-resolved X-ray absorption near-edge spectroscopy. Rev. Sci. Instrum. 86, 073106.Google Scholar
Eder, D.C., Pretzler, G., Fill, E., Eidmann, K. & Saemann, A. (2000). Spatial characteristics of Kα radiation from weakly relativistic laser plasmas. Appl. Phys. B 70, 211217.Google Scholar
Fourmaux, S. & Kieffer, J.C. (2016). Laser-based K α X-ray emission characterization using a high contrast ratio and high-power laser system. Appl. Phys. B 122, 110.Google Scholar
Freyer, B., Zamponi, F., Juvé, V., Stingl, J., Woerner, M., Elsaesser, T. & Chergui, M. (2013). Ultrafast inter-ionic charge transfer of transition-metal complexes mapped by femtosecond X-ray powder diffraction. J. Chem. Phys. 138, 144504.CrossRefGoogle ScholarPubMed
Gao, N. & Ponomarev, I.Y. (2003). Polycapillary X-ray optics: manufacturing status, characterization and the future of the technology. X-Ray Spectrom. 32, 186194.Google Scholar
Gibbon, P. (2005). Short Pulse Laser Interactions with Matter an Introduction. London: Imperial College Press.CrossRefGoogle Scholar
Gibbon, P., Mašek, M., Teubner, U., Lu, W., Nicoul, M., Shymanovich, U., Tarasevitch, A., Zhou, P., Sokolowski-Tinten, K. & von der Linde, D. (2009). Modelling and optimisation of fs laser-produced Kα sources. Appl. Phys. A 96, 2331.CrossRefGoogle Scholar
Green, M. & Cosslett, V.E. (1961). The efficiency of production of characteristic X-radiation in thick targets of a pure element. Proc. Phys. Soc. 78, 1206.Google Scholar
Helios, v 7.3 (2017). 1-D Radiation-Hydrodynamic Code. http://www.prism-cs.com/Software/Helios/Helios.htm.Google Scholar
Iqbal, M., Urrehman, Z., Im, H., Son, J.G., Seo, O., Stiel, H., Nickles, P.V., Noh, D.Y. & Janulewicz, K.A. (2013). Performance improvement of a Kα source by a high-resolution thin-layer-graphite spectrometer and a polycapillary lens. Appl. Phys. B 116, 305311.Google Scholar
Kumakhov, M.A. & Komarov, F.F. (1990). Multiple reflection from surface X-ray optics. Phys. Rep. 191, 289350.Google Scholar
Limpouch, J., Klimo, O., Bína, V. & Kawata, S. (2004). Numerical studies on the ultrashort pulse K-α emission sources based on femtosecond laser-target interactions. Laser Part. Beams 22, 147156.CrossRefGoogle Scholar
Lu, W., Nicoul, M., Shymanovich, U., Tarasevitch, A., Zhou, P., Sokolowski-Tinten, K., von der Linde, D., Mašek, M., Gibbon, P. & Teubner, U. (2009). Optimized K α X-ray flashes from femtosecond-laser-irradiated foils. Phys. Rev. E 80, 026404.Google Scholar
Macdonald, C.A. & Gibson, W.M. (2003). Applications and advances in polycapillary optics. X-Ray Spectrom. 32, 258268.Google Scholar
Mandal, T., Arora, V., Tayyab, M., Bagchi, S., Rathore, R., Ramakrishna, B., Mukharjee, C., Chakera, J.A., Naik, P.A. & Gupta, P.D. (2015). Study of fast electron transport in thin foil targets irradiated by ultrashort intense laser pulses. Appl. Phys. B 119, 281286.CrossRefGoogle Scholar
Miaja-Avila, L., O'Neil, G.C., Uhlig, J., Cromer, C.L., Dowell, M.L., Jimenez, R., Hoover, A.S., Silverman, K.L. & Ullom, J.N. (2015). Laser plasma X-ray source for ultrafast time-resolved X-ray absorption spectroscopy. Struct. Dyn. 2, 024301.Google Scholar
Missalla, T., Uschmann, I., Förster, E., Jenke, G. & von der Linde, D. (1999). Monochromatic focusing of subpicosecond X-ray pulses in the keV range. Rev. Sci. Instrum. 70, 12881299.CrossRefGoogle Scholar
NIST, (2017). Stopping Power and Range Tables for Electrons. http://physics.nist.gov/PhysRefData/Star/Text/ESTAR.html.Google Scholar
Pfeifer, T., Spielmann, C. & Gerber, G. (2006). Femtosecond X-ray science. Rep. Prog. Phys. 69, 443.Google Scholar
Price, D.F., More, R.M., Walling, R.S., Guethlein, G., Shepherd, R.L., Stewart, R.E. & White, W.E. (1995). Absorption of ultrashort laser pulses by solid targets heated rapidly to temperatures 1–1000 eV. Phys. Rev. Lett. 75, 252255.Google Scholar
Rao, B.S., Arora, V., Naik, P.A. & Gupta, P.D. (2012). Study of fast electron jet produced from interaction of intense laser beam with solid target at oblique incidence. Phys. Plasmas 19, 113118.Google Scholar
Rath, B.K., Wang, L., Homan, B.E., Hofmann, F., Gibson, W.M. & MacDonald, C.A. (1998). Measurements and analysis of radiation effects in polycapillary X-ray optics. J. Appl. Phys. 83, 74247435.Google Scholar
Reich, Ch., Gibbon, P., Uschmann, I. & Förster, E. (2000). Yield optimization and time structure of femtosecond laser plasma K α sources. Phys. Rev. Lett. 84, 48464849.Google Scholar
Reich, Ch, Gibbon, P., Uschmann, I. & Förster, E. (2001). Numerical studies on the properties of femtosecond laser plasma K α sources. Laser Part. Beams 19, 147150.Google Scholar
Serbanescu, C.G., Chakera, J.A. & Fedosejevs, R. (2007). Efficient K α X-ray source from submillijoule femtosecond laser pulses operated at kilohertz repetition rate. Rev. Sci. Instrum. 78, 103502.CrossRefGoogle ScholarPubMed
Shymanovich, U., Nicoul, M., Sokolowski-Tinten, K., Tarasevitch, A., Michaelsen, C. & von der Linde, D. (2008). Characterization and comparison of X-ray focusing optics for ultrafast X-ray diffraction experiments. Appl. Phys. B 92, 493499.Google Scholar
Sokolowski-Tinten, K. & von der Linde, D. (2004). Ultrafast phase transitions and lattice dynamics probed using laser-produced X-ray pulses. J. Phys. Condens. Matter 16, R1517.Google Scholar
Sugiro, F.R., Li, D. & MacDonald, C.A. (2004). Beam collimation with polycapillary X-ray optics for high contrast high resolution monochromatic imaging. Med. Phys. 31, 32883297.Google Scholar
Tomov, I.V., Chen, J., Ding, X. & Rentzepis, P.M. (2004). Efficient focusing of hard X-rays generated by femtosecond laser driven plasma. Chem. Phys. Lett. 389, 363366.Google Scholar
Zamponi, F., Ansari, Z., Woerner, M. & Elsaesser, T. (2010). Femtosecond powder diffraction with a laser-driven hard X-ray source. Opt. Express 18, 947.CrossRefGoogle ScholarPubMed
Zhavoronkov, N., Gritsai, Y., Korn, G. & Elsaesser, T. (2004). Ultra-short efficient laser-driven hard X-ray source operated at a kHz repetition rate. Appl. Phys. B 79, 663667.Google Scholar
Ziener, Ch., Uschmann, I., Stobrawa, G., Reich, Ch., Gibbon, P., Feurer, T., Morak, A., Düsterer, S., Schwoerer, H., Förster, E. & Sauerbrey, R. (2002). Optimization of K α bursts for photon energies between 1.7 and 7 keV produced by femtosecond-laser-produced plasmas of different scale length. Phys. Rev. E 65, 066411.CrossRefGoogle Scholar