Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-09T10:53:18.323Z Has data issue: false hasContentIssue false

Experience of micro-heterogeneous target fabrication to study energy transport in plasma near critical density

Published online by Cambridge University Press:  08 June 2006

A.M. KHALENKOV
Affiliation:
Lebedev Physical Institute, Moscow, Russia
N.G. BORISENKO
Affiliation:
Lebedev Physical Institute, Moscow, Russia
V.N. KONDRASHOV
Affiliation:
Troitsk Institute for Innovation and Thermonuclear Research, Troitsk, Russia
Yu.A. MERKULIEV
Affiliation:
Lebedev Physical Institute, Moscow, Russia
J. LIMPOUCH
Affiliation:
Czech Technical University in Prague, Prague, Czech Republic
V.G. PIMENOV
Affiliation:
Zelinsky Institute of Organic Chemistry, Moscow, Russia

Abstract

The experience of target fabrication with low-density and cluster heterogeneity is presented. Cluster plasma research is strongly dependent on target fabrication development and target structure characterization. Ten more target parameters should be measured for experiment interpreting in case of micro-heterogeneous plasma. Foam and foil targets, high-Z doped also, are produced and irradiated on the existing laser facilities. The density of 4.5 mg/cc cellulose triacetate in the form of regular three-dimensional polymer networks are achieved which is as low as plasma critical density for the third harmonic of iodine laser light. The possibilities of varying important target parameters, methods of their monitoring are discussed. Experiments with underdense foam targets with or without clusters irradiated on Prague Asterix Laser System (PALS) laser facility are analyzed preliminary for target optimization. Under-critical foams of varying structure (closed-cell foam or three-dimensional networks) and densities are reported for plasma experiments. Thermal and radiation transport in such targets are considered.

Type
Research Article
Copyright
© 2006 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Batani, D., Desai, Lower., Th., Hall, T.A., Nazarov, W., Koenig, M., &Benuzzi-Mounaix, A. (2002). Interaction of soft-x-ray thermal radiation with foam-layered targets. Phys. Rev. E 65, 066404.Google Scholar
Borisenko, N.G., Akunets, A.A., Bushuev, V.S., Dorogotovtsev, V.M. & Merkuliev, Yu.A. (2003). Motivation and fabrication methods for inertial confinement fusion energy targets. Laser Part. Beams 21, 505509.Google Scholar
Borisenko, N.G., Merkuliev, Yu. A. & Gromov, A.I. (1994). Microheterogeneous targets—a new challenge in technology, plasma physics, and laser interaction with matter. J. Moscow Phys. Soc 4, 4773.Google Scholar
Fincke, J.R., Lanier, N.E., Batha, S.H., Hueckstaedt, R.M., Magelssen, G.R., Rothman, S.D., Parker, K.W. & Horsfield, C. (2005). Effect of convergence on growth of the Richtmyer-Meshkov instability. Laser Part. Beams 23, 2125.Google Scholar
Fukuda, Y., Akahane, Y., Aoyama, M., Inoue, N., Ueda, H., Kishimoto, Y., Yamakawa, K., Faenov, A.Y., Magunov, A.I., Pikuz, T.A., Skobelev, I.Y., Abdallah, J., Csanak, G., Boldarev, A.S. & Gasilov, V.A. (2004). Generation of X rays and energetic ions from superintense laser irradiation of micron-sized Ar clusters. Laser Part. Beams 22, 215220.Google Scholar
Greschik, F. & Kull, H. (2004). Two-dimensional PIC simulation of atomic clusters in intense laser fields. Laser Part. Beams 22, 137145.Google Scholar
Grun, J., Emery, M.H. & Kacenjar, S. (1984). Observation of the Rayleigh-Taylor instability in ablatively accelerated foils. Phys. Rev. Lett. 53, 13521355.CrossRefGoogle Scholar
Gus'kov, S. Yu. & Merkuliev, Yu.A. (2001). Low-density absorber-converter of laser fusion targets for direct irradiation. Quant. Electron 31, 311317.CrossRefGoogle Scholar
Jungwirth, K., Cejnarova, A., Juha. L., Kralicova, B., Krasa, J., Krousky, E., Krupickova, P., Laska, L., Masek, K., Mocek, T., Pfeifer, M., Prag A., Renner, O., Rohlena, K., Rus, B., Skala, J., Straka, P. & Ullschmied, J. (2001). The Prague Asterix Laser System. Phys. Plasmas 8, 24952501.CrossRefGoogle Scholar
Kanapathipilliai, M. (2006). Nonlinear absorption of ultra short laser pulses by clusters. Laser Part. Beams 24, 914.CrossRefGoogle Scholar
Khalenkov, A.M., Borisenko, N.G., Erokhin, A.A., Fedotov, S.I., Merkuliev, Yu. A., Osipov, M.V., Pimenov, V.G., Puzyrev, V.N., Starodub, A.N., Studenov, V.B. & Yakushev O.F. (2004). Cluster targets and experiments on KANAL-2 laser installation. Proc. 28th European Conference on Laser Interaction with Matter, pp. 277282, Frascati, Roma: R.C. Enea.
Koch, J.A., Estabrook, K.G., Bauer, J.D., Back, C.A., Rubenchik, A.M., Hsieh, E.J., Cook, R.C., Macgowan, B.J., Moody, J.D., Moreno, J.C., Kalantar, D. & Lee, R.W. (1995). Time-resolved x-ray imaging of high-power laser-irradiated underdense silica aerogels and agar foams. Phys. Plasmas 2, 38203831.CrossRefGoogle Scholar
Limpough, J., Demchenko, N.N., Gus'kov, S.Yu., Kalal, M., Kasperczuk, A., Kondrashov, V.N., Krousky, E., Masek, K., Pizarczyk, P., Pizarczyk, T. & Rozanov, V.B. (2004). Laser interaction with plastic foam—metallic foil layered targets. Plasma Phys. Cont. Fusion 46, 18311841.CrossRefGoogle Scholar
Mulser, P., Kanapathipilliai, M. & Hoffmann, D.H.H. (2005). Two very efficient nonlinear laser absorption mechanisms in clusters. Phys. Rev. Lett. 95, 103401.CrossRefGoogle Scholar
Pisarczyk, T., Arendzikowski, R., Parys, P. & Patron, Z. (1994). Polari-interferometer with automatic images processing for laser plasma diagnostics. Laser Part. Beams 12, 549562.CrossRefGoogle Scholar
Remington, B.A. (2001). High energy density astrophysics in the laboratory. Proc. Inertial Fusion Sciences and Applications, pp. 10031029, Osaka, Japan: Elsevier.
Rudraiaah, N., Krishnamurthy, B.S., Jalaja, A.S. & Desai, T. (2004). Effect of a magnetic field on the growth rate of the Rayleigh-Taylor instability of a laser-accelerated thin ablative surface. Laser Part. Beams 22, 2933.Google Scholar
Shokri, B., Niknam, A.R. & Krainov, V. (2004a). Cluster structure ellects on the interaction of an ultrashort intense laser field with large clusters. Laser Part. Beams 22, 1318.Google Scholar
Shokri, B., Niknam, A.R. & Smirnov, M. (2004b). Ionization processes in the ultrashort, intense laser field interaction with large clusters. Laser Part. Beams 22, 4550.Google Scholar