Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-23T08:59:13.980Z Has data issue: false hasContentIssue false

Excitation of large amplitude wake electron oscillations in adiabatic plasma

Published online by Cambridge University Press:  01 February 2013

Youmei Wang
Affiliation:
Department of Physics, School of Science, Hangzhou Dianzi University, Hangzhou, China Institute for Fusion Theory and Simulation, Department of Physics, Zhejiang University, Hangzhou, China
M.Y. Yu*
Affiliation:
Institute for Fusion Theory and Simulation, Department of Physics, Zhejiang University, Hangzhou, China Institute for Theoretical Physics I, Ruhr University, Bochum, Germany
Z.Y. Chen
Affiliation:
Department of Physics, Beijing University of Chemical Technology, Beijing, China Lawrence Berkeley National Laboratory, Berkeley, California
Gaimin Lu
Affiliation:
Southwestern Institute of Physics, Chengdu, China
*
Address correspondence and reprint requests to: M.Y. Yu, Institute for Fusion Theory and Simulation, Department of Physics, Zhejiang University, Hangzhou 310027, China. E-mail: [email protected]

Abstract

Electron plasma waves excited and/or modified by finite objects such as laser and charged particle pulses are investigated nonperturbatively using a simple model where the driver is unaffected by the interaction. It is shown that smooth as well as sharply peaked electron plasma wake waves of large amplitude can exist. In particular, two charged pulses moving in tandem can excite a highly localized electron plasma wave without producing the expected long wake wave, a configuration that should be particularly useful for efficient trapping and acceleration of electrons to high energies.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bernstein, I.B., Greene, J.M. & Kruskal, M.D. (1957). Exact nonlinear plasma oscillations. Phys. Rev. 108, 546550.CrossRefGoogle Scholar
Chen, F.F. (1974). Introduction to Plasma Physics, 249251. New York: Plenum.Google Scholar
Davidson, R.C. (1972). Methods in Nonlinear Plasma Theory. New York: Academic. Chap. 1.Google Scholar
Dodd, R.K., Eilbeck, J.C., Gibbon, J.D. & Morris, H.C. (1982). Solitons and Nonlinear Wave Equations. London: Academic.Google Scholar
Galyamin, S.N. & Tyukhtin, A.V. (2011). Phys. Rev. E 84, 056608.CrossRefGoogle Scholar
Garrett, H.B. (1981). Rev. Geophys. 19, 577616.CrossRefGoogle Scholar
Goertz, C.K. (1989) Rev. Geophys. 27, 271292CrossRefGoogle Scholar
Gupta, D.N. & Suk, H. (2007). Electron acceleration to high energy by using two chirped lasers. Laser Part. Beams 25, 3136.CrossRefGoogle Scholar
Gupta, D.N., Nam, I.H. & Suk, H. (2011). Laser-driven plasma beat-wave propagation in a density-modulated plasma. Phys. Rev. E 84, 056403.CrossRefGoogle Scholar
Gurevich, A.V., Pitaevsky, L.P. & Smirnova, V.V. (1969). Ionospheric aerodynamics. Space Sci. Rev. 9, 805871.CrossRefGoogle Scholar
Hora, H. (1988). Particle acceleration by superposition of frequency controlled laser pulses. Nat. 333, 337338.CrossRefGoogle Scholar
Joshi, C., Mori, W., Katsouleas, T., Dawson, J.M., Kindel, J. & Forslund, D.W. (1984). Ultrahigh gradient particle acceleration by intense laser-driven plasma density waves. Nat. (Lond.) 311, 525529.CrossRefGoogle Scholar
Joshi, C. (2007). The development of laser- and beam-driven plasma accelerators as an experimental field. Phys. Plasmas 14, 055501.CrossRefGoogle Scholar
Karimov, A.R., Stenflo, L. & Yu, M.Y. (2011). Flow oscillations in radial expansion of an inhomogeneous plasma layer. Phys. Lett. A 375, 26292636.CrossRefGoogle Scholar
Karpman, V.I. (1975). Nonlinear Waves in Dispersive Media. New York: Pergamon.Google Scholar
Lin, H., Xu, Z., Li, R. & Chen, L.M. (2004). Electron acceleration by overlapped plasma waves. Phys. Plasmas 11, 51675172.CrossRefGoogle Scholar
Liu, V.C. (1967). Particles trapped in the potential well behind a mesothermally moving satellite. Nat. 215, 127128.CrossRefGoogle Scholar
Mangles, S.P.D., Wlaton, B.R., Najmudim, Z., Dangor, A.E., Kruschelnik, K., Malka, V., Mangloskki, M., Lopes, N., Caras, C., Mendes, G. & Dorchies, F. (2006). Table-top laser-plasma accelerator as an electron radiographic sources. Laser Part. Beams 24, 185190.CrossRefGoogle Scholar
Mirza, A.M., Mahmood, M.A. & Murtaza, G. (2003). Exact nonlinear dust kinetic Alfvn waves in a dust-ion plasma. New J. Phys. 5, 116.1–13.CrossRefGoogle Scholar
Montgomery, D., Joyce, G.R. & Sugihara, R. (1968). Inverse third power law for the shielding of test particles. Plasma Phys. 10, 681686.CrossRefGoogle Scholar
Niu, H.Y., He, X.T., Qiao, B. & Zhou, C.T. (2008). Resonant acceleration of electrons by intense circularly polarized Gaussian laser pulses. Laser Part. Beams 26, 5160.CrossRefGoogle Scholar
Porkalab, M. & Goldman, M.V. (1976). Upper Hybrid Solitons. Phys. Fluids 19, 872877.CrossRefGoogle Scholar
Rosenbluth, M.N. & Liu, C.S. (1972). Excitation of plasma waves by two laser beams. Phys. Rev. Lett. 29, 701704.CrossRefGoogle Scholar
Sagdeev, R.Z. (1966). Cooperative phenomena and shock waves in collisionless plasmas. Reviews of Plasma Physics, Vol. 4, p. 23, (Ed. Leontovich, M. A.) New York: Consultants Bureau.Google Scholar
Schamel, H. (2012). Cnoidal electron hole propagation: Trapping, the forgotten nonlinearity in plasma and fluid dynamics. Phys. Plasmas 19, 020501.CrossRefGoogle Scholar
Shvets, G. & Fisch, N.J. (2001). Parametric excitations of fast plasma waves by counter propagating laser beams. Phys. Rev. Lett. 86, 3328.CrossRefGoogle Scholar
Suk, H.N., Barov, N., Rosenzweig, J.B. & Esarey, E. (2001). Plasma Electron Trapping and Acceleration in a Plasma Wake Field Using a Density Transition. Phys. Rev. Lett. 86, 1011.CrossRefGoogle Scholar
Stenflo, L. & Gradov, O.M. (1998). Electron oscillations in a plasma slab. Phys. Rev. E 58, 80448046.CrossRefGoogle Scholar
Stenflo, L. & Yu, M.Y. (1973). Potential of a moving test charge in a collisional plasma. Phys. Scr. 8, 301304.CrossRefGoogle Scholar
Tajima, T. & Dawson, J.M. (1979). Laser electron accelerator. Phys. Rev. Lett. 43, 267272.CrossRefGoogle Scholar
Wang, Y., Yu, M. Y., Lu, G. & Chen, Z. (2010). Exact plasma wave solutions for isothermal electron fluid plasma. Phys. Lett. A 374, 30533057.CrossRefGoogle Scholar
Wang, Y. & Yu, M.Y. (2010). Quasistationary wake plasma wave excited by a comoving charged pulse. Phys. Plasmas 17, 112116.CrossRefGoogle Scholar
Wu, H.-C. & Meyer-Ter-Vehn. (2012). Giant half-cycle attosecond pulses. Nat. Photon. 6, 304307.CrossRefGoogle Scholar
Wu, H.-C., Sheng, Z.-M. & Zhang, J. (2005). Chirped pulse compression in nonuniform plasma Bragg gratings. Appl. Phys. Lett. 87, 201502.CrossRefGoogle Scholar
Yu, W., Cao, L., Yu, M.Y., Cai, H., Xu, H., Yang, X., Lei, A., Tanaka, K.A. & Kodama, R. (2009). Plasma channeling by multiple short-pulse lasers. Laser Part. Beams 27, 109115.CrossRefGoogle Scholar
Yu, M.Y. (1976). Electron plasma wave solitons. Phys. Lett. A59, 361362.CrossRefGoogle Scholar
Yu, M.Y., Chen, Z.Y. & Stenflo, L. (2001). A new class of exact solutions of the Vlasov equation. Phys. Plasmas 8, 50815086.CrossRefGoogle Scholar
Zhou, C.T., Yu, M.Y. & He, X.T. (2007). Electron acceleration by high current-density relativistic electron bunch in plasmas. Laser Part. Beams 25, 313319.CrossRefGoogle Scholar