Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-09T06:07:28.251Z Has data issue: false hasContentIssue false

Evolution of a circularly polarized laser beam in an obliquely magnetized plasma channel

Published online by Cambridge University Press:  25 September 2017

Hemlata
Affiliation:
Department of Physics, University of Lucknow, Lucknow 226007, India
A.K. Upadhyay
Affiliation:
Department of Applied Science, Teerthanker Mahaveer University, Moradabad 244001, India
P. Jha*
Affiliation:
Department of Physics, University of Lucknow, Lucknow 226007, India
*
Address correspondence and reprint requests to: Pallavi Jha, Department of Physics, University of Lucknow, Lucknow 226007, India. E-mail: [email protected]

Abstract

The evolution of the spot size and amplitude of a circularly polarized laser beam propagating in a plasma channel embedded in an obliquely applied magnetic field has been investigated. The wave equation describing the evolution of the radiation field is set up and a variational technique is used to obtain the equations governing the evolution of the spot size and amplitude. Numerical methods are used to analyze the evolution of the laser beam spot size and amplitude. It is seen that the amplitudes of the two transverse components of the electric field of the laser beam evolve differently, since they are driven by unequal current densities. This leads to the conversion of a circularly polarized laser beam into an elliptically polarized beam, under appropriate conditions.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abdelli, S., Khalfaoui, A., Kerdja, T. & Ghobrini, D. (1992). Laser-plasma interaction properties through second harmonic generation. Laser Part. Beams 10, 629637.Google Scholar
Amendt, P., Eder, D.C. & Wilks, S.C. (1991). X-ray lasing by optical field induced ionization. Phys. Rev. Lett. 66, 25892592.CrossRefGoogle ScholarPubMed
Berezhiani, V. I. & Murusidze, I.G. (1992). Interaction of highly relativistic short laser pulses with plasmas and nonlinear wakefield generation. Phys. Scr. 45, 8790.Google Scholar
Chen, H.-Y., Liu, S.-Q. & Li, X.-Q. (2011). Self-modulation instability of an intense laser beam in a magnetized pair plasma. Phys. Scr. 83, 035502.Google Scholar
Deutsch, C., Furukaw, H., Mima, K., Murakami, M. & Nishihara, K. (1996). Interaction physics of fast ignitor concept. Phys. Rev. Lett. 77, 2883–2486.Google Scholar
Eder, D.C., Amemdt, P., Dasilva, L.B., London, R.A., Macgowan, B.J., Matthews, D.L., Penetrquante, B.M., Rosen, M.D., Wilks, S.C., Donnelly, T.D., Falcone, R.W. & Strobel, G.L. (1994). Tabletop x-ray lasers. Phys. Plasmas 1, 17441752.CrossRefGoogle Scholar
Esarey, E., Schroeder, C.B. & Leemans, W.P. (2009). Physics of laser-driven plasma-based electron accelerators. Rev. Mod. Phys. 81, 1229.Google Scholar
Esarey, E., Sprangle, P., Krall, J. & Ting, A. (1996). Overview of plasma based accelerator concepts. IEEE Trans. Plasma Sci. 24, 252288.Google Scholar
Esarey, E., Sprangle, P., Krall, J. & Ting, A. (1997). Self- focusing and guiding of short laser pulses in ionizing gases and plasmas. IEEE J. Quant. Electron. 33, 18791914.Google Scholar
Gorbunov, L.M., Mora, P. & Antonsen, T.M. Jr. (1997). Quasistatic magnetic field generated by a short laser pulse in an underdense plasma. Phys. Plasmas 4, 43584368.Google Scholar
Hu, Z.D., Sheng, Z.M., Ding, W.J., Wang, W.M., Dong, Q.L. & Zhang, J. (2012). Electromagnetic emission from laser wakefields in underdense magnetized plasmas. J. Plasma Phys. 78, 421427.Google Scholar
Hu, Z.D., Sheng, Z.M., Ding, W.J., Wang, W.M., Dong, Q.L. & Zhang, J. (2013). Probing the laser wakefield in underdense plasmas by induced terahertz emission Phys . Plasmas 20, 080702.CrossRefGoogle Scholar
Jha, P., Hemlata, & Misra, R.K. (2014). Evolution of chirped laser pulses in a magnetized plasma channel. Phys. Plasmas 21, 123106.Google Scholar
Jha, P., Kumar, P., Raj, G. & Upadhyay, A.K. (2005). Modulation instability of laser pulse in magnetized plasma. Phys. Plasmas 12, 123104.CrossRefGoogle Scholar
Jha, P., Mishra, R.K., Raj, G. & Upadhyay, A.K. (2007). Second harmonic generation in laser magnetized-plasma interaction. Phys. Plasmas 14, 053107.Google Scholar
Jha, P., Mishra, R.K., Upadhyay, A.K. & Raj, G. (2006). Self-focusing of intense laser beam in magnetized plasma. Phys. Plasmas 13, 103102.CrossRefGoogle Scholar
Jha, P., Mishra, R.K., Upadhyay, A.K. & Raj, G. (2007). Spot-size evolution of laser beam propagating in plasma embedded in axial magnetic field. Phys. Plasmas 14, 114504.Google Scholar
Jha, P., Saroch, A., Misra, R.K. & Upadhayay, A.K. (2012). Laser wakefield acceleration in magnetized plasma. Phys. Rev. ST – A&B 15, 081301/1-6.Google Scholar
Kaw, P., Schmidt, G. & Wilcox, T. (1973). Filamentation and trapping of electromagnetic radiation in plasmas. Phys. Fluid 16, 1522.Google Scholar
Manouchehrizadeh, M. & Dorranian, D. (2013). Effect of obliqueness of external magnetic field on the characteristics of magnetized plasma wakefield. J. Theor. Appl. Phys. 7, 43.Google Scholar
Nuzzo, S., Zarcone, M., Ferrante, G. & Basile, S. (2000). A simple model of high harmonic generation in a plasma. Laser Part. Beams 18, 483487.Google Scholar
Ren, C. & Mori, W.B. (2004). Nonlinear and three-dimensional theory for cross-magnetic field propagation of short-pulse lasers in underdense plasmas. Phys. Plasmas 11, 1978.Google Scholar
Sharma, P., Wadhwani, N. & Jha, P. (2017). Terahertz radiation generation by propagation of circularly polarized laser pulses in axially magnetized plasma. Phys. Plasmas 24, 013102.Google Scholar
Shen, Y.R. (1984). The Principle of Nonlinear Optics. New York: Wiley.Google Scholar
Tabak, M., Hammer, J., Glinsky, M.E., Kruer, W.L., Wilks, S.C., Woodworth, J., Campbell, E.M., Perry, M.D. & Mason, R.J. (1994). Ignition and high gain with ultrapowerful lasers. Phys. Plasmas 1, 16261634.Google Scholar
Tajima, T. & Dawson, J. M. (1979). Laser electron accelerator. Phys. Rev. Lett. 43, 267270.Google Scholar
Verma, N.K. & Jha, P. (2016). Enhanced terahertz radiation generation by two-color laser pulses propagating in plasma. Laser Part. Beams 34, 378383.Google Scholar
Wang, W.-M., Gibbon, P., Sheng, Z.-M. & Li, Y.-T. (2015). Tunable circularly polarized terahertz radiation from magnetized gas plasma. Phys. Rev. Lett. 114, 253901/1-5.Google Scholar