Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-24T03:00:38.807Z Has data issue: false hasContentIssue false

Enhancement of laser induced shock pressure in multilayer solid targets

Published online by Cambridge University Press:  06 March 2006

H.C. PANT
Affiliation:
High Pressure Physics Division, Bhabha Atomic Research Centre, Mumbai, India
M. SHUKLA
Affiliation:
High Pressure Physics Division, Bhabha Atomic Research Centre, Mumbai, India
H.D. PANDEY
Affiliation:
Centre for energy studies, Indian Institute of Technology, Hauz Khas, New Delhi, India
YOGESH KASHYAP
Affiliation:
High Pressure Physics Division, Bhabha Atomic Research Centre, Mumbai, India
P.S. SARKAR
Affiliation:
High Pressure Physics Division, Bhabha Atomic Research Centre, Mumbai, India
A. SINHA
Affiliation:
High Pressure Physics Division, Bhabha Atomic Research Centre, Mumbai, India
V.K. SENECHAM
Affiliation:
Center for Advanced Technology, Indore, India
B.K. GODWAL
Affiliation:
High Pressure Physics Division, Bhabha Atomic Research Centre, Mumbai, India

Abstract

The impedance mismatch technique was used for shock pressure amplification in two layered planar foil targets. Numerical simulation results using one-dimensional (1D) radiation hydrocode MULTI in two layer target consisting of polyethylene (CH2)n-aluminium (Al) and polyethylene (CH2)n-gold (Au), show a pressure enhancement of 12 and 18 Mbar, respectively (or a pressure jump of 1.64 and 2.54, respectively), from initial pressure of 7 Mbar in the reference material (polyethylene) using laser intensity of 5 × 1013 Watts/cm2 at 1.064 μm. The simulation data was also corroborated by experiments in our laboratory. Results of laser driven shock wave experiments for pressure enhancement studies in CH2-Al and CH2-Au targets are also presented. A Nd:YAG laser chain (2 J, 1.064 μm wavelength, 200 ps pulse duration FWHM) is used for generating shocks in the planar CH2 foils of thickness varying from 4 to10 μm, and in two layered CH2-Al (or CH2-Au) targets with 8 μm CH2 and 1.5 μm Al or Au .

Type
Research Article
Copyright
© 2006 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Batani, D., Bossi, S., Benuzzi, A., Koenig, M., Faral, B., Boudenne, J.M., Grandjouan, Nocolas, Atzeni, S. & Temporal, M. (1996). Optical smoothing for shock-wave generation: Application to the measurement of equation of state. Laser Part. Beams 14, 211221.Google Scholar
Batani, D., Balducci, D., Bretta, D., Bernarddinello, A., Lower, Th., Koenig, M., Benuzzi, A., Faral, B. & Hall, T. (2002a). Equation of state data for gold in the pressure range < 10 TPa. Phys. Rev. B 61, 92879294.Google Scholar
Batani, D., Desai, T., Lucchini, G., Lower, T.H. & Hall, T. (2002b). Pressure amplification in thermal x-ray irradiated foam layered gold targets. Laser Part. Beams 20, 165169.Google Scholar
Benuzzi, A., Lower, Th., Koenig, M., Faral, B., Batani, D., Beretta, D., Danson, C. & Pepler, D. (1996). Indirect and direct laser driven shock waves and applications to copper equation of state measurement in 10–40 Mbar pressure range. Phys. Rev. E 54, 21622165.Google Scholar
Cauble, R., Phillion, D.W., Hoover, T.J., Holmes, N.C., Kilkenny, J.D. & Lee, R.W. (1993). Demonstration of 0.75 Gbar planar shocks in x-ray driven foils. Phys. Rev. Lett. 70, 21022104.Google Scholar
Celliers, P.M., Collins, G.W., Da Silva, L.B., Gold, D.M., Cauble, R., Wallace, R.J., Foord, M.E. & Hammel, B.A. (2000). Shock induced transformations of liquid deuterium into a metallic fluid. Phys. Rev. Lett. 84, 55645567.Google Scholar
Gu, Y., Fu, S., Jano, W.V., Yu, S., Ni, Y. & Wang, S. (1996). Equation of state studies at SILP by laser driven shock waves. Laser Part. Beams 14, 157169.Google Scholar
Hall, T., Batani, D., Nazarov, W., Koenig, M. & Benuzzi, A. (2002). Recent advances in laser-plasma experiments using foams. Laser Part. Beams 20, 303316.Google Scholar
Hoffmann, D.H.H., Blazevic, A., Ni, P., Rosmej, O., Roth, M., Tahir, N.A., Tauschwitz, A., Udrea, S., Varentsov, D., Weyrich, K. & Maron, Y. (2005). Present and future perspectives for high energy density physics with intense heavy ion and laser beams. Laser Part. Beams 23, 4753.Google Scholar
Koenig, M., Faral, B., Boudenno, J.M., Batani, D., Bennuzi, A., Bossi, S., Remond, C., Perrine, J.P., Temporal, M. & Atzeni, S. (1995). Relative consistency of equations of stsate by laser driven shocks. Phys. Rev. Lett. 74, 22602263.Google Scholar
Lindl, J. (1995). Development of indirect-drive approach to inertial confinement fusion and target physics basis for ignition and gain. Phys. Plasmas 2, 39334024.Google Scholar
Marsh, S.P. (ed.) (1980). LASL Shock Hugoniot Data. Berkeley: University of California Press.
Pant, H.C., Shukla, M., Senecha, V.K., Bandypadhyay, S., Rai, V.N., Khare, P., Bhatt, R.K., Godwal, B.K. & Gupta, N.K. (2002). Equation of state studies using laser-driven shock wave propagation through layered targets. Current Science 82, 149157.Google Scholar
Phillippe, F., Canaud, B., Fortin, X., Garaude, F. & Jourdren, H. (2004). Effects of microstructure on shock propagation in foams. Laser Part. Beams 22, 171174.Google Scholar
Ramis, R., Schmalz, R. & Meyer-Ter-Ven, J. (1988). MULTI—A computer code for one dimensional muti group radiation hydrodynamics. Comp. Phys. Comm. 49, 475500.Google Scholar
Remington, B.A., Drake, R.P., Takabe, H. & Arnett, D. (2000). A review of astrophysics experiments on intense lasers. Phys. Plasmas 7, 16411652.Google Scholar
Rothman, S.D., Evans, A.M., Horsfield, C.J., Graham, P. & Thomas, B.R. (2002). Impedance mismatch equation of state using indirectly laser driven mutimagabar shocks. Phys. Plasmas 9, 17211733.Google Scholar
Shukla, M., Pant, H.C., Senecha, V.K., Khare, P., Veram, A.K., Rao, R.S., Gupta, N.K. & Godwal, B.K. (2003). Equation-of-state study of copper using laser induced shocks near 10 Mbar pressure and revalidation of theoretical modeling. Current Science 85, 802808.Google Scholar
Shukla, M., Upadhyay, A., Senecha, V.K., Khare, P., Bandyopadhyay, S., Rai, V.N., Navathe, C.P., Pant, H.C., Khan, M. & Godwal, B.K. (2003). Equation of state studies using a 10 Hz Nd:YAG laser oscillator. Laser Part. Beams 21, 615626.Google Scholar
Temporal, M., Lopez-Cela, JJ., Piriz, A.R., Grandjouan, N., Tahir, N.A. & Hoffmann, D.H.H. (2005). Compression of a cylindrical hydrogen sample driven by an intense co-axial heavy ion beam. Laser Part. Beams 23, 137142.Google Scholar
Trainor, R.J., Shaner, J.W., Auerbach, J.M. & Holmes, N.C. (1979). Ultra high pressure laser driven shock wave experiments in aluminum. Phys. Rev. Lett. 42, 11541157.Google Scholar
Trusso, S., Barletta, E., Barreca, F., Fazio, E. & Neri, F. (2005). Time resolved imaging studies of the plasma produced by laser ablation of silicon in O2/Ar atmosphere. Laser Part. Beams 23, 149153.Google Scholar
Zel'dovich, Ya. B. & Raizer, Yu. P. (1976). Physics of shock waves and high temperature hydrodynamic phenomena. New York: Academic Press.