Article contents
Energy content of target and electron flow in femtosecond laser target interactions
Published online by Cambridge University Press: 08 April 2015
Abstract
The heating of the titanium foil in a recent femtosecond laser plasma experiment is investigated theoretically in two different ways. In the first, the energy content and thus the heating efficiency of the central volume of the foil is derived by integrating the transverse temperature profiles obtained in this experiment, using specific heats based on the average atom model. In the second approach target heating by the fast electrons, both by direct energy deposition and by resistive heating is investigated. The latter approach makes use of a specially devised electron flow model which includes a simplified quantitative treatment of multi-refluxing as a crucial component. In all, the calculated results of electron beam heating are consistent with experiment within the limitations of the modeling. Finally, a prediction for the temporal dependence of the Kα pulse from the central volume of the foil based on our electron flow model is given.
Keywords
- Type
- Research Article
- Information
- Copyright
- Copyright © Cambridge University Press 2015
References
REFERENCES
- 3
- Cited by