Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-23T05:12:21.971Z Has data issue: false hasContentIssue false

Electron acceleration in a rectangular waveguide filled with unmagnetized inhomogeneous cold plasma

Published online by Cambridge University Press:  16 June 2008

H.K. Malik*
Affiliation:
Plasma Waves and Particle Acceleration Laboratory, Department of Physics, Indian Institute of Technology Delhi, New Delhi, India
S. Kumar
Affiliation:
Department of Physics, Pohang University of Science and Technology, Pohang, Korea
K.P. Singh
Affiliation:
Simutech, Gainesville, Florida
*
Address correspondence and reprint requests to: Hitendra K. Malik, Plasma Waves and Particle Acceleration Laboratory, Department of Physics, Indian Institute of Technology Delhi, New Delhi – 110 016, India. E-mail: [email protected]

Abstract

This paper deals with the study of propagation of electromagnetic wave in a rectangular waveguide filled with an inhomogeneous plasma in which electron density varies linearly in a transverse direction to the mode propagation. A transcendental equation in ω (microwave frequency) is obtained that governs the mode propagation. In addition, an attempt is made to examine the effect of density inhomogeneity on the energy gain acquired by the electron (electron bunch) when it is injected in the waveguide along the direction of the mode propagation. On the basis of angle of deflection of the electron motion we optimize the microwave parameters so that the electron does not strike with the waveguide walls. Conditions have been discussed for achieving larger energy gain. The plasma density inhomogeneity is found to play a crucial role on the cutoff frequency, fields and dispersion relation of the TE10 mode as well as on the acceleration gradient in the waveguide.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alexov, E.G. & Ivanov, S.T. (1993). Nonreciprocal effects in a plasma waveguide. IEEE Trans. Plasma Sci. 21, 254257.CrossRefGoogle Scholar
Baiwen, L.I., Ishiguro, S., Skoric, M.M., Takamaru, H. & Sato, T. (2004). Acceleration of high-quality, well-collimated return beam of relativistic electrons by intense laser pulse in a low-density plasma. Laser Part. Beams 22, 307314.CrossRefGoogle Scholar
Balakirev, V.A., Karas, V.I., Karas, I.V. & Levchenko, V.D. (2001). Plasma wake-field excitation by relativistic electron bunches and charged particle acceleration in the presence of external magnetic field. Laser Part. Beams 19, 597604.CrossRefGoogle Scholar
Cho, S. (2004). Dispersion characteristics and field structure of surface waves in a warm inhomogeneous plasma column. Phys. Plasmas 11, 43994406.CrossRefGoogle Scholar
Ding, Z., Liu, X. & Ma, T. (2001). Polarities of electromagnetic-wave modes in a magnetoplasma-filled cylindrical waveguide. Jpn. J. Appl. Phys 40, 837838.CrossRefGoogle Scholar
Ding, Z.F., Chen, L.W. & Wang, Y.N. (2004). Splitting and mating properties of dispersion curves of wave modes in a cold magnetoplasma-filled cylindrical conducing waveguide. Phys. Plasmas 11, 11681172.CrossRefGoogle Scholar
Flippo, K., Hegelich, B.M., Albright, B.J., Yin, L., Gautier, D.C., Letzring, S., Schollmeier, M., Schreiber, J., Schulze, R. & Fernandez, J.C. (2007). Laser-driven ion accelerators: Spectral control, monoenergetic ions and new acceleration mechanisms. Laser Part. Beams 25, 38.CrossRefGoogle Scholar
Gupta, D.N. & Suk, H. (2007). Electron acceleration to high energy by using two chirped lasers. Laser Part. Beams 25, 3136.CrossRefGoogle Scholar
Hirshfield, J.L., Lapointe, M.A., Ganguly, A.K., Yoder, R.B. & Wang, C. (1996). Multimegawatt cyclotron autoresonance accelerator. Phys. Plasmas 3, 21632168.CrossRefGoogle Scholar
Ivanov, S.T. & Nikolaev, N.I. (1998). The spectrum of electromagnetic waves in a planar gyrotropic plasma waveguide. Jpn. J. Appl. Phys. 37, 50335088.CrossRefGoogle Scholar
Jawla, S.K., Kumar, S. & Malik, H.K. (2005). Evaluation of mode fields in a magnetized plasma waveguide and electron acceleration. Opt. Comm. 251, 346360.CrossRefGoogle Scholar
Jing, C., Liu, W., Xiao, L., Gai, W. & Schoessow, P. (2003). Dipole-mode wakefields in dielectric-loaded rectangular waveguide accelerating structures. Phys. Rev. E. 6, 016502 (1–6).Google Scholar
Kado, M., Daido, H., Fukumi, A., Li, Z., Orimo, S., Hayashi, Y., Nishiuchi, M., Sagisaka, A., Ogura, K., Mori, M., Nakamura, S., Noda, A., Iwashita, Y., Shirai, T., Tongu, H., Takeuchi, T., Yamazaki, A., Itoh, H., Souda, H., Nemoto, K., Oishi, Y., Nayuki, T., Kiriyama, H., Kanazawa, S., Aoyama, M., Akahane, Y., Inoue, N., Tsuji, K., Nakai, Y., Yamamoto, Y., Kotaki, H., Kondo, S., Bulanov, S., Esirkepov, T., Utsumi, T., Nagashima, A., Kimura, T. & Yamakawa, K. (2006). Observation of strongly collimated proton beam from Tantalum targets irradiated with circular polarized laser pulses. Laser Part. Beams 24, 117123.CrossRefGoogle Scholar
Karmakar, A. & Pukhov, A. (2007). Collimated attosecond GeV electron bunches from ionization of high-Z material by radially polarized ultra-relativistic laser pulses. Laser Part. Beams 25, 371377.CrossRefGoogle Scholar
Kawata, S., Kong, Q., Miyazaki, S., Miyauchi, K., Sonobe, R., Sakai, K., Nakajima, K., Masuda, S., Ho, Y.K., Miyanaga, N., Limpouch, J. & Andreev, A.A. (2005). Electron bunch acceleration and trapping by ponderomotive force of an intense short-pulse laser. Laser Part. Beams 23, 6167.CrossRefGoogle Scholar
Kovalenko, A.V. & Kovalenko, V.P. (1996). Langmuir oscillations in a cold inhomogeneous plasma. Phys. Rev. E 53, 40464050.CrossRefGoogle Scholar
Koyama, K., Adachi, M., Miura, E., Kato, S., Masuda, S., Watanabe, T., Ogata, A. & Tanimoto, M. (2006). Monoenergetic electron beam generation from a laser-plasma accelerator. Laser Part. Beams 24, 95100.CrossRefGoogle Scholar
Kumar, S. & Malik, H.K. (2006a). Effect of negative ions on oscillating two stream instability of a laser driven plasma beat wave in a homogeneous plasma. Phys. Scripta 74, 304309.CrossRefGoogle Scholar
Kumar, S. & Malik, H.K. (2006b). Electron acceleration in a plasma filled rectangular waveguide under obliquely applied magnetic field. J. Plasma Phys. 72, 983987.CrossRefGoogle Scholar
Kumar, S., Malik, H.K. & Nishida, Y. (2006). Wake field excitation and electron acceleration by triangular and sawtooth laser pulses in a plasma: An analytical approach. Phys. Scripta 74, 525530.CrossRefGoogle Scholar
Lifschitz, A.F., Faure, J., Glinec, Y., Malka, V. & Mora, P. (2006). Proposed scheme for compact GeV laser plasma accelerator. Laser Part. Beams 24, 255259.CrossRefGoogle Scholar
Lotov, K.V. (2001). Laser wakefield acceleration in narrow plasma-filled channels: Laser Part. Beams 19, 219222.CrossRefGoogle Scholar
Malik, H.K. (2003). Energy gain by an electron in the fundamental mode of a rectangular waveguide by microwave radiation. J. Plasma Phys. 69, 5967.Google Scholar
Malik, H.K. (2007). Oscillating two stream instability of a plasma wave in a negative ion containing plasma with hot and cold positive ions. Laser Part. Beams 25, 397406.CrossRefGoogle Scholar
Malik, H.K., Kumar, S. & Nishida, Y. (2007). Electron acceleration by laser produced wake field: Pulse shaper effect. Opt. Comm. 280, 417423.CrossRefGoogle Scholar
Maraghechi, B., Willett, J.E. & Mehdian, H. (1994). High-frequency waves in a plasma waveguide. Phys. Plasmas 1, 31813188.CrossRefGoogle Scholar
Nicholson, D.R. (1981). Oscillating two-stream instability with pump of finite extent. Phys. Fluids 24, 908910.CrossRefGoogle Scholar
Nickles, P.V., Ter-Avetisyan, S., Schnuerer, M., Sokollik, T., Sandner, W., Schreiber, J., Hilscher, D., Jahnke, U., Andreev, A. & Tikhonchuk, V. (2007). Review of ultrafast ion acceleration experiments in laser plasma at Max Born Institute. Laser Part. Beams 25, 347363.CrossRefGoogle Scholar
Palmer, R.B. (1972). Interaction of relativistic particles and free electromagnetic waves in the presence of a static helical magnet. J. Appl. Phys. 43, 30143023.CrossRefGoogle Scholar
Park, S.Y. & Hirshfield, J.L. (1997). Theory of wakefields in a dielectric-lined waveguide. Phys. Rev. E 62, 12661283.CrossRefGoogle Scholar
Reitsma, A.J.W. & Jaroszynski, D.A. (2004). Coupling of longitudinal and transverse motion of accelerated electrons in laser wakefield acceleration. Laser Part. Beams 22, 407413.CrossRefGoogle Scholar
Sakai, K., Miyazaki, S., Kawata, S., Hasumi, S. & Kikuchi, T. (2006). High-energy-density attosecond electron beam production by intense short-pulse laser with a plasma separator. Laser Part. Beams 24, 321327.CrossRefGoogle Scholar
Watanabe, I., Nishimura, H. & Matsuo, S. (1995). Wave propagation in a cylindrical electron cyclotron resonance plasma chamber. Jpn. J. Appl. Phys. 34, 36753682.CrossRefGoogle Scholar
Xu, J.J., Kong, Q., Chen, Z., Wang, P.X., Wang, W., Lin, D. & Ho, Y.K. (2007). Polarization effect of fields on vacuum laser acceleration. Laser Part. Beams 25, 253257.CrossRefGoogle Scholar
Yoder, R.B., Marshall, T.C. & Hirshfield, J.L. (2001). Energy-gain measurements from a microwave inverse free-electron-laser accelerator. Phys. Rev. Lett. 86, 17651768.CrossRefGoogle ScholarPubMed
Zhang, T.B., Hirshfield, J.L., Marshall, T.C. & Hafizi, B. (1997). Stimulated dielectric wake-field accelerator. Phys. Rev. E 56, 46474655.CrossRefGoogle Scholar
Zhou, C.T., Yu, M.Y. & He, X.T. (2007). Electron acceleration by high current-density relativistic electron bunch in plasmas. Laser Part. Beams 25, 313319.CrossRefGoogle Scholar