Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-20T05:02:36.606Z Has data issue: false hasContentIssue false

Effects of long rarefied plasma on fast electron generation for FIREX-I targets

Published online by Cambridge University Press:  13 December 2011

H. Sakagami*
Affiliation:
Fundamental Physics Simulation Division, National Institute for Fusion Science, Toki, Japan
A. Sunahara
Affiliation:
Institute for Laser Technology, Suita, Japan
T. Johzaki
Affiliation:
Institute for Laser Technology, Suita, Japan
H. Nagatomo
Affiliation:
Institute of Laser Engineering, Osaka University, Suita, Japan
*
Address correspondence and reprint requests to: H. Sakagami, Fundamental Physics Simulation Division, National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292, Japan. E-mail: [email protected]

Abstract

Long-scale preformed plasmas are generated inside the cone by the pre-pulse of the heating laser in the cone-guided fast ignition scheme and it is found that coupling efficiency from the heating laser to fast electrons especially suitable for core heating is drastically reduced by the preformed plasmas. To mitigate this serious problem, an extremely thin film is suggested to cover the entrance of the cone. This method, however, introduces long rarefied plasmas around the entrance of the cone and the main pulse must propagate through these plasmas. Therefore, fast electron characteristics produced by the main pulse could be affected, and effects of long rarefied plasmas on fast electron generation are investigated. It is found that the electron beam intensity becomes larger than that without the rarefied plasma, but the energy coupling rate from the heating laser to the core decreases due to lack of appropriate electrons for core heating. To achieve less than 10% degradation of the core electron temperature, the thin film must be expanded by irradiation of the pre-pulse so that the length and the density of rarefied plasmas become less than 500 µm and one-tenth of the critical density. A thickness of the thin film can be determined by these criteria and the intensity of the pre-pulse.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Azechi, H. & Firex Project. (2008). The FIREX program on the way to inertial fusion energy. J. Phys. Conf. Ser. 112, 012002.CrossRefGoogle Scholar
Cai, H.B., Mima, K., Zhou, W.M., Johzaki, T., Nagatomo, H., Sunahara, A. & Mason, R.J. (2009). Enhancing the number of high-energy electrons deposited to a compressed pellet via double cones in fast ignition. Phys. Rev. Lett. 102, 245001.CrossRefGoogle ScholarPubMed
Johzaki, T., Nagatomo, H., Sakagami, H., Sentoku, Y., Nakamura, T., Mima, K., Nakao, Y. & Yokota, T. (2006). Core heating analysis of fast ignition targets by integrated simulations. J. Phys. IV 133, 385389.Google Scholar
Johzaki, T., Sakagami, H., Nagatomo, H. & Mima, K. (2007). Holistic simulation for FIREX project with FI3. Laser Part. Beams 25, 621629.CrossRefGoogle Scholar
Johzaki, T., Sentoku, Y., Nagatomo, , Sakagami, H., Nakao, Y. & Mima, K. (2009). Core heating properties in FIREX-I: Influence of cone tip. Plasma Phys. Contr. Fusion 51, 014002.CrossRefGoogle Scholar
Johzaki, T., Nagatomo, H., Sunahara, A., Cai, H.B., Sakagami, H. & Mima, K. (2010). Integrated simulations of core heating in cone-guiding fast ignition FIREX-I. J. Phys. Conf. Ser. 244, 022040.CrossRefGoogle Scholar
Johzaki, T., Nagatomo, H., Sunahara, A., Cai, H.B., Sakagami, H., Nakao, Y. & Mima, K. (2011). Pre-plasma effects on core heating and enhancing heating efficiency by extended double cone for FIREX. Nucl. Fusion 49, 073022.Google Scholar
Kemp, A.J., Sentoku, Y. & Tabak, M. (2009). Hot-electron energy coupling in ultraintense laser-matter interaction. Phys. Rev. E 79, 066406.CrossRefGoogle ScholarPubMed
Kinoshita, K., Zhidkov, A., Hosokai, T., Ohkubo, T. & Uesaka, M. (2004). Propagation of an intense femtosecond laser pulse through a thin foil filter. App. Phys. Lett. 84, 46234625.CrossRefGoogle Scholar
Kodama, R., Shiraga, H., Shigemori, K., Toyama, Y., Fujioka, S., Azechi, H., Fujita, H., Habara, H., Hall, T., Izawa, Y., Jitsuno, T., Kitagawa, Y., Krushelnick, K.M., Lancaster, K.L., Mima, K., Nagai, K., Nakai, M., Nishimura, H., Norimatsu, T., Norreys, P.A., Sakabe, S., Tanaka, K.A., Youssef, A., Zepf, M. & Yamanaka, T. (2002). Nuclear fusion: Fast heating scalable to laser fusion ignition. Nat. 418, 933934.CrossRefGoogle ScholarPubMed
Kondo, K., Maeda, H., Hama, Y., Morita, S., Zoubir, A., Kodama, R., Tanaka, K.A., Kitagawa, Y. & Izawa, Y. (2006). Control of amplified optical parametric fluorescence for hybrid chirped-pulse amplification. J. Opt. Soc. Am. B23, 231235.CrossRefGoogle Scholar
Mima, K., Sunahara, A., Shiraga, H., Nishimura, H., Azechi, H., Nakamura, T., Johzaki, T., Nagatomo, H., Garcia, C. & Veralde, P. (2010). FIREX project and effects of self-generated electric and magnetic fields on electron-driven fast ignition. Plasma Phys. Contr. Fusion 52, 124047.CrossRefGoogle Scholar
Nagatomo, H., Ohnishi, N., Mima, K., Sawada, K., Nishihara, K. & Takabe, H. (2002). Analysis of hydrodynamic instabilities in implosion using high-accuracy integrated implosion code. Proc. 2nd Int. Conf. on Inertial Fusion Sciences and Applications, pp. 140142. Paris: Elsevier.Google Scholar
Nakamura, T., Sakagami, H., Johzaki, T., Nagatomo, H. & Mima, K. (2006). Generation and transport of fast electrons inside cone targets irradiated by intense laser pulses. Laser Part. Beams 24, 58.CrossRefGoogle Scholar
Nakamura, T., Mima, K., Sakagami, H., Johzaki, T. & Nagatomo, H. (2008). Generation and confinement of high energy by irradiation of ultra-intense short laser pulses onto cone targets. Laser Part. Beams 26, 207212.CrossRefGoogle Scholar
Sakagami, H. & Mima, K. (2002). Fast ignition simulations with collective PIC code. Proc. 2nd Int. Conf. on Inertial Fusion Sciences and Applications, pp. 380383. Paris: Elsevier.Google Scholar
Sakagami, H. & Mima, K. (2004). Interconnection between hydro and PIC codes for fast ignition simulations. Laser Part. Beams 22, 4144.CrossRefGoogle Scholar
Sakagami, H., Johzaki, T., Nagatomo, H. & Mima, K. (2006). Fast ignition integrated interconnecting code project for cone-guided targets. Laser Part. Beams 24, 191198.CrossRefGoogle Scholar
Sakagami, H., Johzaki, T., Nagatomo, H. & Mima, K. (2009). Generation control of fast electron beam by low density foam for FIREX-I. Nucl. Fusion 49, 075026.CrossRefGoogle Scholar
Sunahara, A., Sasaki, A. & Nishihara, K. (2008). Two-dimensional radiation hydrodynamic simulation for extreme ultra-violet emission from laser-produced tin plasmas. J. Phys. Conf. Ser. 112, 042048.CrossRefGoogle Scholar
Sunahara, A., Johzaki, T., Nagatomo, H., & Mima, K. (2012). Generation of pre-formed plasma and its reduction for fast-ignition. Laser Part. Beam doi: 10.1017/S0263034611000723.CrossRefGoogle Scholar