Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-26T12:55:25.188Z Has data issue: false hasContentIssue false

Effect of relativistic mutual interaction of two laser beams on the growth of laser ripple in plasma

Published online by Cambridge University Press:  02 June 2005

GUNJAN PUROHIT
Affiliation:
Centre for Energy Studies, Indian Institute of Technology, New Delhi, India
P.K. CHAUHAN
Affiliation:
Centre for Energy Studies, Indian Institute of Technology, New Delhi, India
R.P. SHARMA
Affiliation:
Centre for Energy Studies, Indian Institute of Technology, New Delhi, India
H.D. PANDEY
Affiliation:
Centre for Energy Studies, Indian Institute of Technology, New Delhi, India

Abstract

This paper presents an effect of relativistic mutual interaction of two laser beams of different frequencies on the growth of a laser ripple in laser produced plasmas. The nonlinearity due to relativistic mass variation depends not only on the intensity of one laser but also on the second laser. Therefore, one laser beam affects the dynamics of the second beam and hence a mutual nonlinear interaction (cross-focusing) takes place. The dynamical equations governing the laser intensity of two laser beams and the perturbation present on one laser beam (ripple) have been set up and a numerical solution has been presented for typical laser plasma parameters. It is found that a change in the intensity of the second laser beam can affect the growth of the laser ripple significantly. This study is important in plasma beat wave excitation and collective laser particle accelerators.

Type
Research Article
Copyright
2005 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Akhamanov, S.A., Sukhorukov, A.P. & Khokhlov, R.V. (1968). Self-focusing and diffraction of light in nonlinear medium. Sov. Phys. Uspekhi 10, 609635.CrossRefGoogle Scholar
Berger, R.L., Lasinski, B.F., Langdon, A.B., Kaiser, T.B., Afeyan, B.B., Cohen, B.I., Still, C.H. & Williams, E.A. (1995). Influence of spatial and temporal laser beam smoothing on stimulated Brillouin scattering in filamentarty laser light. Phys. Rev. Lett. 75, 1078.CrossRefGoogle Scholar
Blue, B.E., Clayton, C.E., O'Connell, C.L., Decker, F.J., Hogan, M.J., Huang, C., Iverson, R., Joshi, C., Katsouleas, T.C., Marsh, K.A., Mori, W.B. & Walz, D. (2003). Parametric exploration of intense positron beam-plasma interactions. Laser Part. Beams 21, 497504.Google Scholar
Darrow, C., Umstadter, D., Katsouleas, T., Mori, W.B., Clayton, C.E. & Joshi, C. (1986). Saturation of beat-excited plasma waves by electrostatic mode coupling. Phys. Rev. Lett. 56, 26222632.CrossRefGoogle Scholar
Esarey, E., Ting, A. & Sprangle, P. (1988). Relativistic focusing and beat wave phase velocity control in plasma beat wave accelerator. Appl. Phys. Lett. 53, 12611268.Google Scholar
Gorbunov, L.M. & Kirsanov, V.I. (1987). Sov. Phys. JETP 66, 290.Google Scholar
Huller, S., Mounaix, Ph. & Pesme, D. (1996). Phys. Scr. T63, 151.Google Scholar
Huller, S., Mounaix, Ph., Pesme, D. & Tikhonchuk, V.T. (1997). Interaction of two neighboring laser beams taking in to account the effect of plasma hydrodynamics. Phys. Plasmas 4, 26702680.CrossRefGoogle Scholar
Joshi, C., Tajima, T., Dawson, J.M., Baldis, H.A. & Ebrahim, N.A. (1981). Forward Raman instability and electron acceleration. Phys. Rev. Lett. 47, 12851288.CrossRefGoogle Scholar
Katsouleas, T. & Dawson, J.M. (1983). Unlimited electron acceleration in laser driven plasma waves. Phys. Rev. Lett. 51, 392395.CrossRefGoogle Scholar
Kitagawa, Y., Matsumoto, T., Minamihata, T., Sawai, K., Matsuo, K., Mima, K., Nishihara, K., Azechi, H., Tanaka, K.A., Tkaba, H. & Nakai, S. (1992). Beat wave excitation of plasma wave and observation of accelerated electron. Phys. Rev. Lett. 68, 4851.CrossRefGoogle Scholar
Krall, J. (1993). Enhanced acceleration in a self modulated laser wake-field accelerator. Phys. Rev. A. 48, 21572161.Google Scholar
Manot, P. (1995). Experimental demonstration of relativistic self-channeling of a multi terawatt laser pulse in an under dense plasma. Phys. Rev. Lett. 74, 29532956.CrossRefGoogle Scholar
Mckinstrie, C.J. & Bingham, R. (1989). The modulation instability of coupled waves. Phys. Fluids B1, 230237.CrossRefGoogle Scholar
Mckinstrie, C.J. & Russell, A. (1988). Nonlinear focusing of coupled waves. Phys. Rev. Lett 61, No.-21, 29292932.CrossRefGoogle Scholar
Mulser, P. & Bauer, D. (2004). Fast ignition of fusion pellets with super intense lasers: Concepts, problems, and prospective. Laser Part. Beams 22, 512.Google Scholar
Nakajima, K., Fisher, D., Kavakubo, T., Nakanishi, H., Ogata, A., Kato, Y., Kitagowa, Y., Kodama, P., Mima K., Sriraga, H., Suzuki, K., Yamakawa, K., Sakawa, Y., Shoji, T., Nishida, Y., Yugami, N., Downe, M., &Tajima, T. (1995). Observation of ultrahigh electron acceleration by a self modulated intense short laser pulse. Phys. Rev. Lett. 74, 44284431.CrossRefGoogle Scholar
Purohit, G., Pandey, H.D. & Sharma, R.P. (2003). Effect of cross focusing of two laser beams on the growth of laser ripple in plasma. Laser Part. Beams 21, 567572.Google Scholar
Ren, C., Hemker, R.G., Fonseca, R.A., Duda, B.J. & Mori, W.B. (2000). Mutual interaction of laser beams: Braided light. Phys. Rev. Lett. 85, 21242127.CrossRefGoogle Scholar
Saini, N.S. & Gill, T.S. (2004). Enhanced Raman scattering of a rippled laser beam in a magnetized collisional plasma. Laser Part. Beams 22, 3540.Google Scholar
Sodha, M.S., Ghatak, A.K. & Tripathi, V.K. (1976). Progress in Optics 13, 171, North–Holland Publishing Company–Amsterdam, Oxford.Google Scholar
Shukla, P.K., Rao, N.N., Yu, M.Y. & Tsintsadze, N.L. (1986). Relativistic non-linear effects in plasma. Phys. Report 138, 1149.CrossRefGoogle Scholar
Sodha, M.S., Govind, Tewari, D.P., Sharma, R.P., &Kaushik, S.C. (1979). Excitation of a plasma wave by two coaxial Gaussian EM beams. J. Appl. Phys. 50(1), 158164.CrossRefGoogle Scholar
Sprangle, P. & Esarey, E. (1991). Stimulated backscattered harmonic generation from intense laser interaction with beams and plasmas. Phys. Rev. Lett. 67, 20212024.CrossRefGoogle Scholar
Sprangle, P., Esarey, E., Krall, J. & Joyce, G. (1992). Propagation and guiding of intense laser pulse in plasmas. Phys. Rev. Lett. 69, 22002003.CrossRefGoogle Scholar
Sprangle, P., Esarey, E. & Tang, C.M. (1990). Phy. Rev. A 64, 2011.Google Scholar
Sprangle, P., Tang, C.M. & Esarey, E. (1987). IEEE Trans. Plasma Sci. 15, 145.CrossRefGoogle Scholar
Sprangle, P., Esarey, E., Ting, A. & Joyce, G. (1988). Laser wakefield acceleration and relativistic optical guiding. Appl. Phys. Lett. 53, 21462148.Google Scholar
Tajima, T. & Dawson, J.M. (1979). Laser electron accelerator. Phys. Rev. Lett. 43, 267270.CrossRefGoogle Scholar
Toy, M.M. & Shen, Y.S. (1969). Phys. Rev. Lett. 22, 994.Google Scholar
Wyrtele, J.S. (1993). Advance accelerator Concepts, AIP, New York.Google Scholar