Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-26T23:15:45.433Z Has data issue: false hasContentIssue false

Diagnosis of the soft X-ray spectrum emitted by laser-plasmas using a spectroscopic photon sieve

Published online by Cambridge University Press:  14 June 2012

Yulin Gao
Affiliation:
National Key Laboratory of Laser Fusion; Research Center of Laser Fusion, Mianyang, Sichuan, China
Weimin Zhou
Affiliation:
National Key Laboratory of Laser Fusion; Research Center of Laser Fusion, Mianyang, Sichuan, China
Lai Wei
Affiliation:
National Key Laboratory of Laser Fusion; Research Center of Laser Fusion, Mianyang, Sichuan, China
Leifeng Cao*
Affiliation:
National Key Laboratory of Laser Fusion; Research Center of Laser Fusion, Mianyang, Sichuan, China
Xiaoli Zhu
Affiliation:
Institute of Microelectronics, Chinese Academy of Sciences, Beijing, China
Zongqing Zhao
Affiliation:
National Key Laboratory of Laser Fusion; Research Center of Laser Fusion, Mianyang, Sichuan, China
Yuqiu Gu
Affiliation:
National Key Laboratory of Laser Fusion; Research Center of Laser Fusion, Mianyang, Sichuan, China
Baohan Zhang
Affiliation:
National Key Laboratory of Laser Fusion; Research Center of Laser Fusion, Mianyang, Sichuan, China
Changqing Xie
Affiliation:
Institute of Microelectronics, Chinese Academy of Sciences, Beijing, China
*
Address correspondence and reprint requests to: Leifeng Gao, National Key Laboratory of Laser Fusion, Research Center of Laser Fusion, China Academy of Engineering Physics, P.O. Box, 919-986-6, Mianyang, Sichuan Province, China. E-mail: [email protected]

Abstract

Laser plasma experiments, which demonstrated the single order diffraction property of spectroscopic photon sieve (a novel single-order diffraction grating), were performed on the SILEX-I femto-second laser facility. High-intensity laser radiation was focused onto a Cu target to generate plasma. The spectra of soft X-ray from copper plasmas have been measured with spectroscopic photon sieve based spectrograph. The results show that the spectroscopic photon sieve is able to provide soft X-ray spectrum free from higher-order diffraction components. The measured spectra obtained with such a spectroscopic photon sieve need no unfolding process to extract higher-order diffraction interference.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alexandrov, Yu.M., Koshevoi, M.O., Murashova, V.A., Nikitina, T.F., Rupasov, A.A., Sklizkov, G.V., Shikanov, A.S., Yakimenko, M.N., Zakharenkov, Yu.A., Eidmann, K., Sigel, R. & Tsakiris, G.D. (1988). X-ray spectrometer using a free-standing transmission grating and a microchannel plate as detector for laser plasma studies. Laser Part. Beams 6, 561567.CrossRefGoogle Scholar
Anderson, E.H., Olynick, D.L., Harteneck, B., Veklerov, E., Denbeaux, G., Chao, W., Lucero, L., Johnson, L. & Attwood, D. (2000). Nanofabrication and diffractive optics for high-resolution X-ray applications. Vac. Sci. Technol. B. 18, 2970Google Scholar
Arora, V., Kumbhare, S.R., Naik, P.A. & Gupta, P.D. (2000). A simple high-resolution on-line X-ray imaging crystal spectrograph for laser-plasma interaction studies. Rev. Sci. Instrum. 71, 26442650.CrossRefGoogle Scholar
Born, M. & Wolf, E. (1999). Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light. New York: Cambridge University Press.CrossRefGoogle Scholar
Bourgade, J.L., Combis, P., Jacquet, M.L., Breton, J.P.L., Mascureau, J.D., Naccache, D., Sauneuf, R., Thiell, G., Keane, C., MacGowan, B. & Matthews, D. (1988). SPARTUVIX: A time-resolved XUV transmission grating spectrograph for x-ray laser research. Rev. Sci. Instrum. 59, 1840.CrossRefGoogle Scholar
Cao, L.F., Förster, E., Fuhrmann, A., Wang, C.K., Kuang, L.Y., Liu, S.Y. & Ding, Y.K. (2007). Single order X-ray diffraction with binary sinusoidal transmission grating. Appl. Phys. Lett. 90, 053501.CrossRefGoogle Scholar
Cao, L.F., Gao, Y.L., Zhou, W.M., Wei, L., Zang, H.P., Fan, W., Zhao, Z.Q., Gu, Y.Q., Zhang, B.H., Zhu, X.L., Xie, C.Q., Ye, T.C., Zhou, H.J., Huo, B.L. & Cui, M.Q. (2011). Single order spectra by disperse soft X-ray with spectroscopic photon sieve. Opt. Expr. (In press).Google Scholar
Chowdhury, A., Joshi, R.A., Kumnhare, S.R., Naik, P.A. & Gupta, P.D. (1999). Development of a flat-field XUV spectrograph for laser plasma interaction studies. Sadhana. 24, 557566.CrossRefGoogle Scholar
Ditmire, T., Hutchinson, M.H.R., Key, M.H., Lewis, C.L.S., MacPhee, A., Mercer, I., Neely, D., Perry, M.D., Smith, R.A., Wark, J.S. & Zepf, M. (1995). Amplification of xuv harmonic radiation in a gallium amplifier. Phys. Rev. A. 51 R4337R4340.CrossRefGoogle Scholar
Eagleton, R.T. & James, S.F. (2004). Transmission grating streaked spectrometer for the diagnosis of soft x-ray emission from ultrahigh intensity laser heated targets. Rev. Sci. Instrum. 75, 3969.CrossRefGoogle Scholar
Eidmann, K., Kishimoto, T., Herrman, P., Mizui, J., Pakula, R., Sige, R. & Witkowski, S. (1986). Absolute soft X-ray measurements with a transmission grating spectrometer. Laser Part. Beams. 4, 521530.CrossRefGoogle Scholar
Fiedorowicz, H., Bartnik, A., Szczurek, M., Fill, E., Li, Y.L. & Pretzier, G. (1996). XUV emission from an elongated plasma column produced using a high-power laser with a gas puff target. Laser Part. Beams 14, 253260.CrossRefGoogle Scholar
Fill, E., Stephan, K.H., Predehl, P., Pretzler, G., Eidmann, K. & Saemann, A. (1999). Transmission grating spectroscopy in the 10 keV range. Rev. Sci. Instrum. 70, 2597.CrossRefGoogle Scholar
Hogan, W.J., Bangerter, R. & Kulcinski, G.L. (1992). Energy from Intertial Fusion. Phys. Today 45, 4250.CrossRefGoogle Scholar
Huillier, A.L. & Balcou, P. (1993). High-order harmonic generation in rare gases with a 1-ps 1053-nm laser. Phys. Rev. Lett. 70, 774777.CrossRefGoogle ScholarPubMed
Koenig, M., Boudenne, J.M., Legriel, P., Benuzzi, A., Grandpierre, T., Batani, D., Bossi, S., Nicolella, S. & Benattar, R. (1997). A computer driven crystal spectrometer with charge coupled device detectors for x-ray spectroscopy of laser plasmas. Rev. Sci. Instrum. 68, 23872392.CrossRefGoogle Scholar
Kuang, L.Y., Cao, L.F., Zhu, X.L., Wu, S.C., Wang, Z.B., Wang, C.K., Liu, S.Y., Jiang, S.E., Yang, J.M., Ding, Y.K., Xie, C.Q. & Zheng, J. (2011). Single-order diffraction transmission grating used in x-ray spectroscopy. Opt. Lett. 36, 39543956.CrossRefGoogle ScholarPubMed
Kuang, L.Y., Wang, C.K., Wang, Z.B., Cao, L.F., Zhu, X.L., Xie, C.Q., Liu, S.Y. & Ding, Y.K. (2010). Quantum-dot-array diffraction grating with single order diffraction property for soft x-ray region. Rev. Sci. Instr. 81, 073508.CrossRefGoogle ScholarPubMed
Liu, Y.Q., Zhang, L.Q., Song, X.Y., Yang, X.D., Fan, P.Z., Han, S.S., Zhang, Z.Q. & Xu, Z.Z. (1999). X-ray emission from fs laser interaction with solid targets. Chinese J. Lasers 26, 6064.Google Scholar
Miyazaki, K. & Takada, H. (1995). High-order harmonic generation in the tunneling regime. Phys. Rev. A. 52 30073021.CrossRefGoogle ScholarPubMed
Nagata, Y., Midorikawa, K., Kubodera, S., Obara, M., Tashiro, H. & Toyoda, K. (1993). Soft-X-ray amplification of the Lyman-α transition by optical-field-induced ionization. Phys. Rev. Lett. 71, 37743777.CrossRefGoogle ScholarPubMed
Sailaja, S., Arora, V., Kumbhare, S.R., Naik, P.A., Gupta, P.D., Fedin, D.A., Rupasov, A.A. & Shikanov, A.S. (1998). A simple XUV transmission grating spectrograph with sub-angstrom resolution for laser-plasma interaction studies. Meas. Sci. Technol. 9, 14621468.CrossRefGoogle Scholar
Schriever, G., Leben, R., Naweed, A., Mager, S., Neff, W., Kraft, S., Scholze, F. & Ulm, G. (1997). Calibration of charge coupled devices and a pinhole transmission grating to be used as elements of a soft X-ray spectrograph. Rev. Sci. Instrum. 68, 3301.CrossRefGoogle Scholar
Sigel, R., Tsakiris, G.D., Lavarenne, F., Massen, J., Fedosejevs, R., Eidmann, K., Meyer-Ter-Vehn, J., Murakami, M., Witkowski, S., Nishimura, H., Kato, Y., Takabe, H., Endo, T., Kondo, K., Shiraqa, H., Sakabe, S., Jitsuno, T., Takaqi, M., Nakai, S. & Yamanaka, C. (1992). Experimental investigation of radiation heat waves driven by laser-induced Planck radiation. Phys. Rev. A. 45 39873996.CrossRefGoogle ScholarPubMed
Wang, C.K., Kuang, L.Y., Wang, Z.B., Cao, L.F., Liu, S.Y., Ding, Y.N., Wang, D.Q., Xie, C.Q., Ye, T.C. & Hu, G.Y. (2008). Phase-type quantum-dot-array diffraction grating. Rev. Sci. Instrum. 79, 123502.CrossRefGoogle ScholarPubMed
Wang, C.K., Kuang, L.Y., Wang, Z.B., Liu, S.Y., Ding, Y.K., Cao, L.F., Förster, E., Wang, D.Q., Xie, C.Q. & Ye, T.C. (2007). Characterization of the diffraction properties of quantum-dot-array diffraction grating. Rev. Sci. Instrum. 78, 053503.CrossRefGoogle ScholarPubMed
Yang, J.M., Ding, Y.N., Zhang, W.H., Zhang, J.Y. & Zheng, Z.J. (2003). Precise measurement technology of soft-x-ray spectrum using dual transmission grating spectrometer. Rev. Sci. Instrum. 74, 4268.CrossRefGoogle Scholar
Zeng, G.M., Daido, H., Murai, K., Kato, Y., Nakatsuka, M. & Nakai, S. (1992). Line X-ray emissions from highly ionized plasmas of various species irradiated by compact solid-state lasers. J. Appl. Phys. 72, 3355.CrossRefGoogle Scholar