Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-28T00:42:38.594Z Has data issue: false hasContentIssue false

Development of a high-power KrF laser system, ASHURA

Published online by Cambridge University Press:  09 March 2009

Y. Owadano
Affiliation:
Electrotechnical Laboratory, Agency of Industrial Science and Technology, 1-1-4 Umezono, Tsukuba, Ibaraki, Japan 305
I. Okuda
Affiliation:
Electrotechnical Laboratory, Agency of Industrial Science and Technology, 1-1-4 Umezono, Tsukuba, Ibaraki, Japan 305
Y. Matsumoto
Affiliation:
Electrotechnical Laboratory, Agency of Industrial Science and Technology, 1-1-4 Umezono, Tsukuba, Ibaraki, Japan 305
M. Tanimoto
Affiliation:
Electrotechnical Laboratory, Agency of Industrial Science and Technology, 1-1-4 Umezono, Tsukuba, Ibaraki, Japan 305
T. Tomie
Affiliation:
Electrotechnical Laboratory, Agency of Industrial Science and Technology, 1-1-4 Umezono, Tsukuba, Ibaraki, Japan 305
K. Koyama
Affiliation:
Electrotechnical Laboratory, Agency of Industrial Science and Technology, 1-1-4 Umezono, Tsukuba, Ibaraki, Japan 305
M. Yano
Affiliation:
Electrotechnical Laboratory, Agency of Industrial Science and Technology, 1-1-4 Umezono, Tsukuba, Ibaraki, Japan 305

Abstract

The present status of the development of a high-power KrF laser system, Ashura, is described. The main amplifier has generated 710 J (95 ns) at the pumping density of 1·lMW/cm3 with the wall plug efficiency of 2·0%. Maximum power of 9·0 GW (200 J/22 ns) per beam has been obtained from the beam lines of six-time pulse multiplexing. Power density of 1 × 1014 W/cm2 has been achieved on target with a 10−6 pre-pulse.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barr, J. R. M. et al. 1987 Optics Communications 66, 127.CrossRefGoogle Scholar
Franz, J. M. & Nodvik, J. S. 1963 J. Appl. Phys. 34, 2346.CrossRefGoogle Scholar
Hanlon, J. A. & McLeod, J. 1987 Fusion Technology 11, 634.CrossRefGoogle Scholar
Hogan, W. J. 1988 paper presented at the Workshop on Inertial Confinement Fusion, (Institute of Laser Engineering, Osaka University, Osaka, Japan, April 18–20, 1988).Google Scholar
Lehmberg, R. H. & Goldhar, J. 1987 Fusion Technology 11, 532.CrossRefGoogle Scholar
Matsumoto, Y. et al. 1988 paper MP-45 in Proc. 16th Int.Quantum Electronics Conference,(Tokyo, July 18–21, 1988).Google Scholar
Owadano, Y. et al. 1983 Plasma Physics and Controlled Nuclear Fusion 1982 1, 125, (International Atomic Energy Agency, Vienna).Google Scholar
Owadano, Y. et al. 1987a Fusion Technology 11, 486CrossRefGoogle Scholar
Owadano, Y. et al. 1987b Proc. Int. Symp. on Short Wavelength Lasers and their Applications (Institute of Laser Engineering, Osaka University, Osaka, Japan, November 11–13, 1987). “Short-Wavelength Lasers and Their Applications”, Springer Proceedings in Physics 30, (Springer-Verlag, 1988). pp. 188193.Google Scholar
Owandano, Y. et al. 1988 paper ThF-4 in Proc. 16th Int. Quantum Electronics Conference(Tokyo, July 18–21, 1988).Google Scholar
Sullivan, J. A. 1987 Fusion Technology 11, 684.CrossRefGoogle Scholar
Tanimoto, M. et al. 1986 Laser and Particle Beams 4, 71.CrossRefGoogle Scholar
Taylor, A. J., Gibson, R. B. & Roberts, J. P. 1988 Optics Letters 13, 814.CrossRefGoogle Scholar
Tomie, T. et al. 1988 paper OR5-C3 Proc. European Conference on Laser Interaction with Matter(Oct. 3–7, 1988, Madrid)Google Scholar