Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-23T01:16:08.394Z Has data issue: false hasContentIssue false

Design of a high-efficiency dual-band coaxial relativistic backward wave oscillator with variable coupling impedance and phase velocity

Published online by Cambridge University Press:  28 November 2012

Yongfu Tang*
Affiliation:
School of Physical Electronics, University of Electronic Science and Technology of China Chengdu, Sichuan, China
Lin Meng
Affiliation:
School of Physical Electronics, University of Electronic Science and Technology of China Chengdu, Sichuan, China
Hailong Li
Affiliation:
School of Physical Electronics, University of Electronic Science and Technology of China Chengdu, Sichuan, China
Ling Zheng
Affiliation:
School of Physical Electronics, University of Electronic Science and Technology of China Chengdu, Sichuan, China
Bin Wang
Affiliation:
School of Physical Electronics, University of Electronic Science and Technology of China Chengdu, Sichuan, China
Feina Zhang
Affiliation:
School of Physical Electronics, University of Electronic Science and Technology of China Chengdu, Sichuan, China
*
Address correspondence and reprint requests to: Yongfu Tang, 435, Yifu Building, No. 4, Section 2, North Jianshe Road, Chengdu, Sichuan, Peoples Republic of China. E-mail: [email protected]

Abstract

A dual-band high-efficiency coaxial relativistic backward wave oscillator (CRBWO) with asymmetric resonant reflector is designed and presented in this paper. Improved sectioned coaxial slow wave structure (SWS) with stepwise variation of coupling impedance and phase velocity is employed, and the performance of the dual-band CRBWO is investigated by use of a 2.5-D particle-in-cell (PIC) simulation code. When the diode voltage is 510 kV and beam current is 9.03 kA, an average microwave power of 1.0 GW with power conversion efficiency of 21.7% is obtained. Synchronously radiating dual-band frequencies of 8.1 GHz and 9.9 GHz are obtained, corresponding to C-band and X-band, respectively. A more clear and stable beating radiation microwave power with beating frequency of 1.8 GHz is acquired.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Carmel, Y., Lou, W.R., Rodgers, J., Guo, H., Destler, W.W., Granatstein, V.L., Levush, B., Antonsen, T. Jr. & Bromborsky, A. (1992). From linearity towards chaos: basic studies of relativistic backward-wave oscillators. Phys. Rev. Lett. 69, 16521655.CrossRefGoogle ScholarPubMed
Chen, C.H., Liu, G.Z., Huang, W.H., Song, Z.M., Fan, J.P. & Wang, H.J. (2002). A repetitive X-band relativistic backward-wave oscillator. IEEE Trans. Plasma Sci. 30, 11081111.CrossRefGoogle Scholar
Chen, D.B., Wang, D., Meng, F.B. & Fan, Z.K. (2009). Bifrequency magnetically insulated transmission line oscillator. IEEE Trans.Plasma Sci. 37, 2329.CrossRefGoogle Scholar
Ju, J.C., Fan, Y.W., Zhong, H.H. & Shu, T. (2009). A novel dual-frequency magnetically insulated transmission line oscillator. IEEE Trans.Plasma Sci. 37, 20412047.Google Scholar
Eltchaninov, A.A., Korovin, S.D., Rostov, V.V., Pegel, I.V., Mesyats, G.A., Rukin, S.N., Shpak, V.G., Yalandin, M.I. & Ginzburg, N.S. (2003). Production of short microwave pulses with a peak power exceeding the driving electron beam power. Laser Part. Beams 21, 187196.CrossRefGoogle Scholar
Ginzburg, N.S., Rozental, R.M. & Sergeev, A.S. (2003 a). Dual band operation of the relativistic BWO. Proc. 4th IEEE International Conference on Vacuum Electronics, 181–182.Google Scholar
Ginzburg, N.S., Rozental, R.M. & Sergeev, A.S. (2003 b). On the synthesis of radiation spectrum in a sectioned relativistic backward wave tube. Techn. Phys. Lett. 29, 164167.CrossRefGoogle Scholar
Ginzburg, N.S., Zaitsev, N.I., Ilyakov, E.V., Kulagin, I.S., Novozhilova, Y.V., Rozenthal, R.M. & Sergeev, A.S. (2002). Observation of chaotic dynamics in a powerful backward-wave oscillator. Phys. Rev. Lett. 89, 108304.CrossRefGoogle Scholar
He, J.T., Cao, Y.B., Zhang, J.D., Wang, T. & Ling, J.P. (2011). Design of a dual-frequency high-power microwave generator. Laser Part. Beams 29, 479485.CrossRefGoogle Scholar
Huang, F., Wang, D., Xing, Q.Z. & Deng, J.K. (2005). Study on the region of instable beam-wave interaction in a relativistic backward wave oscillator. High Power Laser Part. Beams 17, 15471552.Google Scholar
Kang, Y.B., Kim, D.H., Titov, V.N. & Park, G.S. (2003). Chaotic signal generation from relativistic backward-wave oscillator. Proc. 4th IEEE International Conference on Vacuum Electronics, 187–188.CrossRefGoogle Scholar
Kitsanov, S.A., Klimov, A.I., Korovin, S.D., Kurkan, I.K., Pegel, I.V. & Polevin, S.D. (2003). Decimeter-wave resonant relativistic BWO. Radiophysics Quan. Electr. 46, 797801.CrossRefGoogle Scholar
Korovin, S.D., Kurkan, I.K., Loginov, S.V., Pegel, I.V., Polevin, S.D., Volkov, S.N. & Zherlitsyn, A.A. (2003). Decimeter-band frequency-tunable sources of high-power microwave pulse. Laser Part. Beams 21, 175185.CrossRefGoogle Scholar
Li, G.L., Shu, T., Yuan, C.W., Zhu, J., Liu, J., Wang, B. & Zhang, J. (2010). Simultaneous operation of X band gigawatt level high power microwaves. Laser Part. Beams 28, 3544.CrossRefGoogle Scholar
Liu, G.Z., Xiao, R.Z., Chen, C.H., Shao, H., Hu, Y.M. & Wang, H.J. (2008). A Cerenkov generator with coaxial slow wave structure. J. Appl. Phys. 103, 093303.CrossRefGoogle Scholar
Moreland, L.D., Schamiloglu, E. & Lemke, R.W. (1995). Effects of end reflections on the performance of relativistic backward wave oscillators. Proc. 10th IEEE Pulsed power Conf., Albuquerque, 705–710.CrossRefGoogle Scholar
Ryskin, N.M. & Titov, V.N. (2001). Self-modulation and chaotic regimes of generation in a relativistic backward-wave oscillator with end reflections. Radiophysics Quan. Electr. 44, 793806.CrossRefGoogle Scholar
Swegle, J.A., Poukey, J.W. & Leifeste, G.T. (1985). Backward wave oscillators with rippled wall resonators: analytic theory and numerical simulation. Phys. Fluids 28, 28822894.CrossRefGoogle Scholar
Tang, Y.F., Meng, L., Li, H.L., Zheng, L., Yin, Y. & Wang, B. (2012). A dual-frequency coaxial relativistic backward-wave oscillator with a modulating resonant reflector. Phys. Scripta 85, 055801.CrossRefGoogle Scholar
Teng, Y., Liu, G.Z., Shao, H. & Tang, C.X. (2009). A new reflector designed for efficiency enhancement of CRBWO. IEEE Trans. Plasma Sci. 37, 10621068.CrossRefGoogle Scholar
User's Manual of Code CHIPIC. (2004). Chengdu: University of Electronic Science and Technology of China ChengduGoogle Scholar
Wang, T., Qian, B.L., Zhang, J.D., Zhang, X.P., Cao, Y.B. & Zhang, Q. (2011). Preliminary experimental investigation of a dual-band relativistic backward wave oscillator with dual beams. Phys. Plasmas 18, 013107.Google Scholar
Wang, T., Zhang, J.D., Qian, B.L., & Zhang, X.P. (2010). Dual-band relativistic backward wave oscillators based on a single beam and dual beams. Phys. Plasmas 17, 043107.Google Scholar
Wen, G.J., Li, J.Y., Xie, F.Z. & Liu, S.G. (1999). Coaxial relativistic backward wave oscillator and coaxial master oscillator-power amplifier. Internat. J. Infrared . Millimeter Waves 20, 5769.CrossRefGoogle Scholar
Xiao, R.Z., Zhang, X.W., Zhang, L.J., Li, X.Z., Zhang, L.G., Song, W., Hu, Y.M., Sun, J., Huo, S.F., Chen, C.H., Zhang, Q.Y. & Liu, G.Z. (2010). Efficient generation of multi-gigawatt power by a klystron-like relativistic backward wave oscillator. Laser Part. Beams 28, 505511.CrossRefGoogle Scholar
Yang, Z.Q., Liang, Z., Zhang, B., Li, J.Y., Ma, W.D., Hu, S.X. & Liu, S.G. (1999). A Cherenkov oscillator operating at two different wave bands. Internat. J. Infrared Millimeter Waves 20, 8392.CrossRefGoogle Scholar
Yue, L.N., Wang, W.X., Gong, Y.B. & Zhang, K.Q. (2004). Analysis of coaxial ridged disk-loaded slow-wave structures for relativistic traveling wave tubes. IEEE Trans. Plasma Sci. 30, 10861092.CrossRefGoogle Scholar
Zhang, Q., Yuan, C.W. & Liu, L. (2010). Design of a dual-band power combining architecture for high-power microwave applications. Laser Part. Beams 28, 377385.CrossRefGoogle Scholar
Zheng, X.D., Minami, K., Amin, M.R. & Watanable, T. (1995). Linear analysis of a backward wave oscillator with coaxial slow wave structure. J. Phys. Soc. Japan 64, 14021411.CrossRefGoogle Scholar
Zhou, J., Liu, D.G., Liao, C. & Li, Z.H. (2009). An efficient code for electromagnetic PIC modeling and simulation. IEEE Trans. Plasma Sci. 37, 20022011.CrossRefGoogle Scholar